Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lancet Infect Dis ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38723650

RESUMO

BACKGROUND: The first licensed malaria vaccine, RTS,S/AS01E, confers moderate protection against symptomatic disease. Because many malaria infections are asymptomatic, we conducted a large-scale longitudinal parasite genotyping study of samples from a clinical trial exploring how vaccine dosing regimen affects vaccine efficacy. METHODS: Between Sept 28, 2017, and Sept 25, 2018, 1500 children aged 5-17 months were randomly assigned (1:1:1:1:1) to receive four different RTS,S/AS01E regimens or a rabies control vaccine in a phase 2b open-label clinical trial in Ghana and Kenya. Participants in the four RTS,S groups received two full doses at month 0 and month 1 and either full doses at month 2 and month 20 (group R012-20); full doses at month 2, month 14, month 26, and month 38 (group R012-14); fractional doses at month 2, month 14, month 26, and month 38 (group Fx012-14; early fourth dose); or fractional doses at month 7, month 20, and month 32 (group Fx017-20; delayed third dose). We evaluated the time to the first new genotypically detected infection and the total number of new infections during two follow-up periods (12 months and 20 months) in more than 36 000 dried blood spot specimens from 1500 participants. To study vaccine effects on time to the first new infection, we defined vaccine efficacy as one minus the hazard ratio (HR; RTS,S vs control) of the first new infection. We performed a post-hoc analysis of vaccine efficacy based on malaria infection status at first vaccination and force of infection by month 2. This trial (MAL-095) is registered with ClinicalTrials.gov, NCT03281291. FINDINGS: We observed significant and similar vaccine efficacy (25-43%; 95% CI union 9-53) against first new infection for all four RTS,S/AS01E regimens across both follow-up periods (12 months and 20 months). Each RTS,S/AS01E regimen significantly reduced the mean number of new infections in the 20-month follow-up period by 1·1-1·6 infections (95% CI union 0·6-2·1). Vaccine efficacy against first new infection was significantly higher in participants who were infected with malaria (68%; 95% CI 50-80) than in those who were uninfected (37%; 23-48) at the first vaccination (p=0·0053). INTERPRETATION: All tested dosing regimens blocked some infections to a similar degree. Improved vaccine efficacy in participants infected during vaccination could suggest new strategies for highly efficacious malaria vaccine development and implementation. FUNDING: GlaxoSmithKline Biologicals SA, PATH, Bill & Melinda Gates Foundation, and the German Federal Ministry of Education and Research.

2.
J Infect Dis ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438123

RESUMO

BACKGROUND: The RTS, S/AS01E malaria vaccine (RTS, S) is recommended for children in moderate-to-high Plasmodium falciparum malaria transmission areas. This phase 2b trial (NCT03276962) evaluates RTS, S fractional- and full-dose regimens in Ghana and Kenya. METHODS: 1500 children aged 5-17 months were randomised (1:1:1:1:1) to receive RTS, S or rabies control vaccine. RTS, S groups received two full RTS, S doses at month (M)0/M1 followed by either full (groups R012-20, R012-14-26) or fractional (1/5) doses (groups Fx012-14-26, Fx017-20-32). RESULTS: At M32 post-first dose, vaccine efficacy (VE) against clinical malaria (all episodes) ranged from 38% (R012-20; 95%CI: 24-49) to 53% (R012-14-26; 95%CI: 42-62). Vaccine impact estimates (cumulative number of malaria cases averted/1000 children vaccinated) were 1344 (R012-20), 2450 (R012-14-26), 2273 (Fx012-14-26), 2112 (Fx017-20-32). To account for differences in vaccine volume (fractional- versus full-dose), in a post-hoc analysis, we also estimated cases averted/1000 RTS, S full-dose equivalents: 336 (R012-20), 490 (R012-14-26), 874 (Fx012-14-26), 880 (Fx017-20-32). CONCLUSIONS: VE against clinical malaria was similar in all RTS, S groups. Vaccine impact accounting for full-dose equivalence suggests that using fractional-dose regimens could be a viable dose-sparing strategy. If borne out through trial end (M50), these observations underscore the means to reduce cost per regimen with a goal of maximising impact and optimising supply.

3.
medRxiv ; 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38045387

RESUMO

Background: The only licensed malaria vaccine, RTS,S/AS01 E , confers moderate protection against symptomatic disease. Because many malaria infections are asymptomatic, we conducted a large-scale longitudinal parasite genotyping study of samples from a clinical trial exploring how vaccine dosing regimen affects vaccine efficacy (VE). Methods: 1,500 children aged 5-17 months were randomized to receive four different RTS,S/AS01 E regimens or a rabies control vaccine in a phase 2b clinical trial in Ghana and Kenya. We evaluated the time to the first new genotypically detected infection and the total number of new infections during two follow-up periods in over 36K participant specimens. We performed a post hoc analysis of VE based on malaria infection status at first vaccination and force of infection. Results: We observed significant and comparable VE (25-43%, 95% CI union 9-53%) against first new infection for all four RTS,S/AS01 E regimens across both follow-up periods (12 and 20 months). Each RTS,S/AS01 E regimen significantly reduced the number of new infections in the 20-month follow-up period (control mean 4.1 vs. RTS,S/AS01 E mean 2.6-3.0). VE against first new infection was significantly higher in participants who were malaria-infected (68%; 95% CI, 50 to 80%) versus uninfected (37%; 95% CI, 23 to 48%) at the first vaccination (P=0.0053) and in participants experiencing greater force of infection between dose 1 and 3 (P=0.059). Conclusions: All tested dosing regimens blocked some infections to a similar degree. Improved VE in participants infected during vaccination could suggest new strategies for highly efficacious malaria vaccine development and implementation. ( ClinicalTrials.gov number, NCT03276962 ).

4.
Lancet Infect Dis ; 22(9): 1329-1342, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35753316

RESUMO

BACKGROUND: Controlled infection studies in malaria-naive adults suggest increased vaccine efficacy for fractional-dose versus full-dose regimens of RTS,S/AS01. We report first results of an ongoing trial assessing different fractional-dose regimens in children, in natural exposure settings. METHODS: This open-label, phase 2b, randomised controlled trial is conducted at the Malaria Research Center, Agogo, Ashanti Region (Ghana), and the Kenya Medical Research Institute and the US Centers for Disease Control and Prevention site in Siaya County (Kenya). We enrolled children aged 5-17 months without serious acute or chronic illness who had previously received three doses of diphtheria, tetanus, pertussis, and hepatitis B vaccine and at least three doses of oral polio vaccine. Children were randomly assigned (1:1:1:1:1) using a web-based randomisation system with a minimisation procedure accounting for centre to receive rabies control vaccine (M012 schedule) or two full doses of RTS,S/AS01E at month 0 and month 1, followed by either full doses at months 2 and 20 (group R012-20 [standard regimen]), full doses at months 2, 14, 26, and 38 (R012-14), fractional doses at months 2, 14, 26, and 38 (Fx012-14), or fractional doses at months 7, 20, and 32 (Fx017-20). The fractional doses were administered as one fifth (0·1 mL) of the full RTS,S dose (0·5 mL) after reconstitution. All vaccines were administered by intramuscular injection in the left deltoid. The primary outcome was occurrence of clinical malaria cases from month 2·5 until month 14 for the Fx012-14 group versus the pooled R012-14 and R012-20 groups in the per-protocol set. We assessed incremental vaccine efficacy of the Fx012-14 group versus the pooled R012-14 and R012-20 group over 12 months after dose three. Safety was assessed in all children who received at least one vaccine dose. This trial is registered with ClinicalTrials.gov, NCT03276962. FINDINGS: Between Sept 28, 2017, and Sept 25, 2018, 2157 children were enrolled, of whom 1609 were randomly assigned to a treatment group (322 to each RTS,S/AS01E group and 321 to the rabies vaccine control group). 1500 children received at least one study vaccine dose and the per-protocol set comprised 1332 children. Over 12 months after dose three, the incremental vaccine efficacy in the Fx012-14 group versus the pooled R012-14 and R12-20 groups was -21% (95% CI -57 to 7; p=0·15). Up to month 21, serious adverse events occurred in 48 (16%) of 298 children in the R012-20 group, 45 (15%) of 294 in the R012-14 group, 47 (15%) of 304 in the Fx012-14 group, 62 (20%) of 311 in the Fx017-20 group, and 71 (24%) of 293 in the control group, with no safety signals observed. INTERPRETATION: The Fx012-14 regimen was not superior to the standard regimen over 12 months after dose three. All RTS,S/AS01E regimens provided substantial, similar protection against clinical malaria, suggesting potential flexibility in the recommended dosing regimen and schedule. This, and the effect of annual boosters, will be further evaluated through 50 months of follow-up. FUNDING: GlaxoSmithKline Biologicals; PATH's Malaria Vaccine Initiative.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Vacina Antirrábica , Adulto , Criança , Gana , Humanos , Quênia
5.
Vaccine ; 39(43): 6398-6406, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34593270

RESUMO

BACKGROUND: We previously demonstrated that RTS,S/AS01B and RTS,S/AS01E vaccination regimens including at least one delayed fractional dose can protect against Plasmodium falciparum malaria in a controlled human malaria infection (CHMI) model, and showed inferiority of a two-dose versus three-dose regimen. In this follow-on trial, we evaluated whether fractional booster vaccination extended or induced protection in previously protected (P-Fx) or non-protected (NP-Fx) participants. METHODS: 49 participants (P-Fx: 25; NP-Fx: 24) received a fractional (1/5th dose-volume) RTS,S/AS01E booster 12 months post-primary regimen. They underwent P. falciparum CHMI three weeks later and were then followed for six months for safety and immunogenicity. RESULTS: Overall vaccine efficacy against re-challenge was 53% (95% CI: 37-65%), and similar for P-Fx (52% [95% CI: 28-68%]) and NP-Fx (54% [95% CI: 29-70%]). Efficacy appeared unaffected by primary regimen or previous protection status. Anti-CS (repeat region) antibody geometric mean concentrations (GMCs) increased post-booster vaccination. GMCs were maintained over time in primary three-dose groups but declined in the two-dose group. Protection after re-challenge was associated with higher anti-CS antibody responses. The booster was well-tolerated. CONCLUSIONS: A fractional RTS,S/AS01E booster given one year after completion of a primary two- or three-dose RTS,S/AS01 delayed fractional dose regimen can extend or induce protection against CHMI. CLINICAL TRIAL REGISTRATION: NCT03824236. linked to this article can be found on the Research Data as well as Figshare https://figshare.com/s/ee025150f9d1ac739361.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Anticorpos Antiprotozoários , Humanos , Malária Falciparum/prevenção & controle , Plasmodium falciparum , Vacinação
6.
NPJ Vaccines ; 3: 54, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30510775

RESUMO

Whole-sporozoite vaccination/immunization induces high levels of protective immunity in both rodent models of malaria and in humans. Recently, we generated a transgenic line of the rodent malaria parasite P. berghei (Pb) that expresses the P. falciparum (Pf) circumsporozoite protein (PfCS), and showed that this parasite line (PbVac) was capable of (1) infecting and developing in human hepatocytes but not in human erythrocytes, and (2) inducing neutralizing antibodies against the human Pf parasite. Here, we analyzed PbVac in detail and developed tools necessary for its use in clinical studies. A microbiological contaminant-free Master Cell Bank of PbVac parasites was generated through a process of cyclic propagation and clonal expansion in mice and mosquitoes and was genetically characterized. A highly sensitive qRT-PCR-based method was established that enables PbVac parasite detection and quantification at low parasite densities in vivo. This method was employed in a biodistribution study in a rabbit model, revealing that the parasite is only present at the site of administration and in the liver up to 48 h post infection and is no longer detectable at any site 10 days after administration. An extensive toxicology investigation carried out in rabbits further showed the absence of PbVac-related toxicity. In vivo drug sensitivity assays employing rodent models of infection showed that both the liver and the blood stage forms of PbVac were completely eliminated by Malarone® treatment. Collectively, our pre-clinical safety assessment demonstrates that PbVac possesses all characteristics necessary to advance into clinical evaluation.

7.
Vaccine ; 36(39): 5865-5871, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30126674

RESUMO

Malaria continues to be one of the world's most devastating infectious tropical diseases, and alternative strategies to prevent infection and disease spread are urgently needed. These strategies include the development of effective vaccines, such as malaria transmission blocking vaccines (TBV) directed against proteins found on the sexual stages of Plasmodium falciparum parasites present in the mosquito midgut. The Pfs25 protein, which is expressed on the surface of gametes, zygotes and ookinetes, has been a primary target for TBV development. One such vaccine strategy based on Pfs25 is a plant-produced malaria vaccine candidate engineered as a chimeric non-enveloped virus-like particle (VLP) comprising Pfs25 fused to the Alfalfa mosaic virus coat protein. This Pfs25 VLP-FhCMB vaccine candidate has been engineered and manufactured in Nicotiana benthamiana plants at pilot plant scale under current Good Manufacturing Practice guidelines. The safety, reactogenicity and immunogenicity of Pfs25 VLP-FhCMB was assessed in healthy adult volunteers. This Phase 1, dose escalation, first-in-human study was designed primarily to evaluate the safety of the purified plant-derived Pfs25 VLP combined with Alhydrogel® adjuvant. At the doses tested in this Phase 1 study, the vaccine was generally shown to be safe in healthy volunteers, with no incidence of vaccine-related serious adverse events and no evidence of any dose-limiting or dose-related toxicity, demonstrating that the plant-derived Pfs25 VLP-FhCMB vaccine had an acceptable safety and tolerability profile. In addition, although the vaccine did induce Pfs25-specific IgG in vaccinated patients in a dose dependent manner, the transmission reducing activity of the antibodies generated were weak, suggesting the need for an alternative vaccine adjuvant formulation. This study was registered at www.ClinicalTrials.gov under reference identifier NCT02013687.


Assuntos
Imunogenicidade da Vacina , Vacinas Antimaláricas/imunologia , Proteínas de Protozoários/imunologia , Vacinas Sintéticas/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Adjuvantes Imunológicos/administração & dosagem , Adolescente , Adulto , Vírus do Mosaico da Alfafa , Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Feminino , Voluntários Saudáveis , Humanos , Vacinas Antimaláricas/efeitos adversos , Malária Falciparum/prevenção & controle , Masculino , Pessoa de Meia-Idade , Plasmodium falciparum , Nicotiana/metabolismo , Vacinas Sintéticas/efeitos adversos , Adulto Jovem
8.
J Infect Dis ; 214(5): 772-81, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27307573

RESUMO

BACKGROUND: The need for a highly efficacious vaccine against Plasmodium falciparum remains pressing. In this controlled human malaria infection (CHMI) study, we assessed the safety, efficacy and immunogenicity of a schedule combining 2 distinct vaccine types in a staggered immunization regimen: one inducing high-titer antibodies to circumsporozoite protein (RTS,S/AS01B) and the other inducing potent T-cell responses to thrombospondin-related adhesion protein (TRAP) by using a viral vector. METHOD: Thirty-seven healthy malaria-naive adults were vaccinated with either a chimpanzee adenovirus 63 and modified vaccinia virus Ankara-vectored vaccine expressing a multiepitope string fused to TRAP and 3 doses of RTS,S/AS01B (group 1; n = 20) or 3 doses of RTS,S/AS01B alone (group 2; n = 17). CHMI was delivered by mosquito bites to 33 vaccinated subjects at week 12 after the first vaccination and to 6 unvaccinated controls. RESULTS: No suspected unexpected serious adverse reactions or severe adverse events related to vaccination were reported. Protective vaccine efficacy was observed in 14 of 17 subjects (82.4%) in group 1 and 12 of 16 subjects (75%) in group 2. All control subjects received a diagnosis of blood-stage malaria parasite infection. Both vaccination regimens were immunogenic. Fourteen protected subjects underwent repeat CHMI 6 months after initial CHMI; 7 of 8 (87.5%) in group 1 and 5 of 6 (83.3%) in group 2 remained protected. CONCLUSIONS: The high level of sterile efficacy observed in this trial is encouraging for further evaluation of combination approaches using these vaccine types. CLINICAL TRIALS REGISTRATION: NCT01883609.


Assuntos
Portadores de Fármacos , Esquemas de Imunização , Vacinas Antimaláricas/efeitos adversos , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Proteínas de Protozoários/imunologia , Adenoviridae/genética , Adolescente , Adulto , Animais , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/patologia , Feminino , Voluntários Saudáveis , Humanos , Vacinas Antimaláricas/administração & dosagem , Masculino , Pessoa de Meia-Idade , Proteínas de Protozoários/administração & dosagem , Resultado do Tratamento , Vacinas Combinadas/administração & dosagem , Vacinas Combinadas/efeitos adversos , Vacinas Combinadas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia , Vaccinia virus/genética , Adulto Jovem
9.
J Infect Dis ; 214(5): 762-71, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27296848

RESUMO

BACKGROUND: Three full doses of RTS,S/AS01 malaria vaccine provides partial protection against controlled human malaria parasite infection (CHMI) and natural exposure. Immunization regimens, including a delayed fractional third dose, were assessed for potential increased protection against malaria and immunologic responses. METHODS: In a phase 2a, controlled, open-label, study of healthy malaria-naive adults, 16 subjects vaccinated with a 0-, 1-, and 2-month full-dose regimen (012M) and 30 subjects who received a 0-, 1-, and 7-month regimen, including a fractional third dose (Fx017M), underwent CHMI 3 weeks after the last dose. Plasmablast heavy and light chain immunoglobulin messenger RNA sequencing and antibody avidity were evaluated. Protection against repeat CHMI was evaluated after 8 months. RESULTS: A total of 26 of 30 subjects in the Fx017M group (vaccine efficacy [VE], 86.7% [95% confidence interval [CI], 66.8%-94.6%]; P < .0001) and 10 of 16 in the 012M group (VE, 62.5% [95% CI, 29.4%-80.1%]; P = .0009) were protected against infection, and protection differed between schedules (P = .040, by the log rank test). The fractional dose boosting increased antibody somatic hypermutation and avidity and sustained high protection upon rechallenge. DISCUSSIONS: A delayed third fractional vaccine dose improved immunogenicity and protection against infection. Optimization of the RTS,S/AS01 immunization regimen may lead to improved approaches against malaria. CLINICAL TRIALS REGISTRATION: NCT01857869.


Assuntos
Esquemas de Imunização , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/imunologia , Malária/prevenção & controle , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia , Adolescente , Adulto , Anticorpos Antiprotozoários/biossíntese , Anticorpos Antiprotozoários/imunologia , Afinidade de Anticorpos , Feminino , Humanos , Cadeias Pesadas de Imunoglobulinas/biossíntese , Cadeias Leves de Imunoglobulina/biossíntese , Masculino , Pessoa de Meia-Idade , Adulto Jovem
10.
Virus Res ; 176(1-2): 280-4, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23602827

RESUMO

Serial passaging of yellow fever virus 17D in Vero cells was employed to derive seed material for a novel inactivated vaccine, XRX-001. Two independent passaging series identified a novel lysine to arginine mutation at amino acid 160 of the envelope protein, a surface-exposed residue in structural domain I. A third passage series resulted in an isoleucine to methionine mutation at residue 113 of the NS4B protein, a central membrane spanning region of the protein which has previously been associated with Vero cell adaptation of other mosquito-borne flaviviruses. These studies confirm that flavivirus adaptation to growth in Vero cells can be mediated by structural or non-structural protein mutations.


Assuntos
Adaptação Biológica , Mutação de Sentido Incorreto , Inoculações Seriadas , Proteínas não Estruturais Virais/genética , Proteínas Estruturais Virais/genética , Vírus da Febre Amarela/crescimento & desenvolvimento , Vírus da Febre Amarela/genética , Substituição de Aminoácidos , Animais , Chlorocebus aethiops , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , RNA Viral/genética , Análise de Sequência de DNA , Células Vero
11.
Vaccine ; 28(22): 3827-40, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20347059

RESUMO

In the last 10 years new concerns have arisen about safety of the live, attenuated yellow fever (YF) 17D vaccine, in particular viscerotropic adverse events, which have a case-fatality rate of 64%. A non-replicating cell culture-based vaccine would not cause these adverse events, and potentially could be used in persons with precautions or contraindications to use of the live vaccine, including age <9 months and >60 years, egg allergy, immune suppression, and pregnancy. We developed a whole virion vaccine from the 17D strain inactivated with beta-propiolactone, and adsorbed to aluminum hydroxide. The inactivated vaccine was highly immunogenic in mice, hamsters, and cynomolgus macaques. After a single dose in hamsters and macaques, neutralizing antibody titers were similar to those elicited by the live 17D vaccine (YF-VAX, Sanofi Pasteur). After two doses of inactivated vaccine, neutralizing antibody titers in hamsters were significantly higher than after a single dose of YF-VAX [geometric mean titer (GMT) 20,480 vs. 1940, respectively (P<0.001, ANOVA)]. Hamsters given a single dose or two doses of inactivated vaccine or a single dose of YF-VAX were fully protected against hepatitis, viremia, weight loss and death after challenge with YF virus (Jimenez strain). A clinical trial of the inactivated vaccine (XRX-001) has been initiated.


Assuntos
Vacina contra Febre Amarela/imunologia , Febre Amarela/prevenção & controle , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Chlorocebus aethiops , Cricetinae , Feminino , Macaca fascicularis , Masculino , Mesocricetus , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Ratos , Ratos Sprague-Dawley , Testes de Toxicidade , Vacinas de Produtos Inativados/imunologia , Células Vero , Vacina contra Febre Amarela/efeitos adversos , Vacina contra Febre Amarela/biossíntese
12.
J Affect Disord ; 107(1-3): 29-36, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17870183

RESUMO

BACKGROUND: Although previous studies have suggested that altruistic behaviors are beneficial for mental health, few studies have examined the impact of altruistic behaviors for children and grandchildren (ABC) on the mental health of parents and grandparents using a longitudinal study design. It is needed to test whether paternal and maternal ABC prevent the development of mental health problems in later life. METHOD: The association between three types of ABC (informal assistance, emotional support, financial support) in 1995-1996 and major depression (MD) in 1998 were examined using a nationally representative longitudinal study in the US (the National Survey of Midlife Development in the United States (MIDUS) in 1995-1996 and the MIDUS Psychological Experience Follow-Up study in 1998, N=724). RESULTS: Moderate amounts of informal assistance and financial support by fathers/grandfathers, but not by mothers/grandmothers, showed a protective effect on MD 2-3 years later, holding parents/grandparents and children covariates. Emotional support was not associated with MD for both sexes after adjusting for covariates. LIMITATION: The sample size in this study was relatively small and not all possible covariates were adjusted. The effect of children's/grandchildren's responses for ABC on the development of parental MD was not examined. CONCLUSION: The impact of ABC on MD in 2-3 years varies depending on the types of ABC and the sex of parents/grandparents. Moderate amounts of informal assistance and financial support had a protective effect on MD in later life among fathers/grandfathers, but not among mothers/grandmothers.


Assuntos
Altruísmo , Comportamento Infantil/psicologia , Transtorno Depressivo Maior/prevenção & controle , Família/psicologia , Pais/psicologia , Adulto , Idoso , Criança , Filho de Pais com Deficiência/psicologia , Filho de Pais com Deficiência/estatística & dados numéricos , Transtorno Depressivo Maior/epidemiologia , Relações Familiares , Pai/psicologia , Feminino , Apoio Financeiro , Seguimentos , Doações , Humanos , Relação entre Gerações , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Mães/psicologia , Estudos Prospectivos , Apoio Social , Inquéritos e Questionários , Estados Unidos/epidemiologia
13.
Gastroenterology ; 128(3): 764-70, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15765411

RESUMO

BACKGROUND & AIMS: Recurrent C difficile -associated diarrhea (CDAD) is associated with a lack of protective immunity to C difficile toxins. A parenteral C difficile vaccine containing toxoid A and toxoid B was reported previously to be safe and immunogenic in healthy volunteers. Our aim was to examine whether the vaccine is also well tolerated and immunogenic in patients with recurrent CDAD. METHODS: Subjects received 4, 50-microg intramuscular inoculations of the C difficile vaccine over an 8-week period. Serum antitoxin antibodies were measured by ELISA, and toxin neutralizing activity was evaluated using the tissue culture cytotoxin assay. RESULTS: Three patients with multiple episodes of recurrent CDAD were vaccinated. Two of the 3 showed an increase in serum IgG antitoxin A antibodies (3-fold and 4-fold increases, respectively) and in serum IgG antitoxin B antibodies (52-fold and 20-fold, respectively). Both also developed cytotoxin neutralizing activity against toxin A and toxin B. Prior to vaccination, the subjects had required nearly continuous treatment with oral vancomycin for 7, 9, and 22 months, respectively, to treat recurrent episodes of CDAD. After vaccination, all 3 subjects discontinued treatment with oral vancomycin without any further recurrence. CONCLUSIONS: A C difficile toxoid vaccine induced immune responses to toxins A and B in patients with CDAD and was associated with resolution of recurrent diarrhea. The results of this study support the feasibility of active vaccination against C difficile and its toxins in high-risk individuals but must be validated in larger, randomized, controlled trials.


Assuntos
Vacinas Bacterianas/uso terapêutico , Clostridioides difficile/imunologia , Diarreia/microbiologia , Diarreia/prevenção & controle , Enterocolite Pseudomembranosa/complicações , Enterocolite Pseudomembranosa/prevenção & controle , Toxoides/uso terapêutico , Adulto , Idoso , Formação de Anticorpos , Toxinas Bacterianas/imunologia , Vacinas Bacterianas/efeitos adversos , Técnicas de Cultura , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva , Toxoides/efeitos adversos
14.
Vaccine ; 21(3-4): 194-201, 2002 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-12450694

RESUMO

Low dose E. coli heat-labile enterotoxin (LT), delivered orally or enterically, has been used as an adjuvant for Helicobacter pylori (H. pylori) urease in healthy adults. In this study we aim to test the safety and adjuvant efficacy of LT delivered rectally together with recombinant H. pylori urease. Eighteen healthy adults without present or past H. pylori infection were enrolled in a double blind, randomized, ascending dose study to receive either urease (60 mg), or urease (60 mg) + LT (5 or 25 microg). The immunization preparation was administered per rectum on days 0, 14 and 28. Serum, stool and saliva anti-urease and anti-LT IgG and IgA antibodies (Abs) were measured and urease-specific and LT-specific antigen secreting cells (ASCs) were counted in peripheral blood at baseline and 7 (ASC counts) or 14 days (antibody levels) after each dosing. Peripheral blood lymphoproliferation assays were also performed at baseline and at the end of the study. Rectally delivered urease and LT were well tolerated. Among the 12 subjects assigned to urease+LT, 2 (16.7%) developed anti-urease IgG Abs, 1 (8.3%) developed anti-urease IgA Abs, and 3 (25%) showed urease-specific IgA(+) ASCs. Immune responses to LT were more vigorous, especially in subjects exposed to 5 microg LT. In the urease+ 5 microg LT group, anti-LT IgG and IgA Abs developed in 60 and 80% of the subjects, respectively, while LT-specific IgG(+) and IgA(+) ASCs were detected in all subjects. The magnitude of the anti-LT response was much higher than the response to urease. No IgA anti-urease or anti-LT Abs were detected in stool or saliva and lymphocyte proliferative responses to urease were unsatisfactory. In conclusion, rectal delivery of 5 microg LT is safe and induces vigorous systemic anti-LT immune responses. Further studies are needed to determine if LT can be an effective adjuvant for rectally delivered antigens.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Enterotoxinas/administração & dosagem , Vacinas contra Escherichia coli/imunologia , Infecções por Helicobacter/prevenção & controle , Helicobacter pylori/enzimologia , Urease/administração & dosagem , Adjuvantes Imunológicos/efeitos adversos , Administração Retal , Anticorpos Antibacterianos/sangue , Enterotoxinas/efeitos adversos , Ensaio de Imunoadsorção Enzimática , Escherichia coli/química , Vacinas contra Escherichia coli/administração & dosagem , Vacinas contra Escherichia coli/efeitos adversos , Humanos , Imunização , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Segurança , Urease/imunologia , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...