Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(7): 2480-2485, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38362421

RESUMO

N-Heterocyclic carbenes (NHC) have been widely studied as ligands for surface chemistry, and have shown advantages compared to existing ligands (e.g. thiols). Herein, we introduce mesoionic carbenes (MICs) as a new type of surface ligand. MICs exhibit higher σ-donor ability compared to typical NHCs, yet they have received little attention in the area of surface chemistry. The synthesis of MICs derived from imidazo[1,2-a]pyridine was established and fully characterized by spectroscopic methods. The self-assembly of these MICs on gold was analyzed by X-ray photoelectron spectroscopy (XPS). Additionally, XPS was used to compare bonding ability in MICs compared to the typical NHCs. These results show that MIC overlayers on gold are robust, resistant to replacement by NHCs, and may be superior to NHCs for applications that require even greater levels of robustness.

2.
Chem Commun (Camb) ; 57(68): 8421-8424, 2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34373867

RESUMO

Combining the stability of the N-heterocyclic carbenes (NHCs) and broad-spectrum recognition of toll-like receptor (TLR) proteins, we report new electrochemical biosensors for bacteria detection. Instead of traditional thiol-gold chemistry, newly synthesized NHCs are employed as the linker molecules to immobilize TLR bio-recognition elements on gold electrodes. Our proof-of-concept methodology includes testing the fidelity of TLR-based electrochemical sensors with NHC linkers. The performance of the biosensors is demonstrated using whole-cell bacterial cultures.


Assuntos
Técnicas Eletroquímicas , Compostos Heterocíclicos/síntese química , Receptores Toll-Like/química , Técnicas Biossensoriais/métodos , Eletrodos , Escherichia coli , Ouro , Compostos Heterocíclicos/química , Modelos Moleculares , Estrutura Molecular , Conformação Proteica , Receptores Toll-Like/metabolismo
3.
ACS Sens ; 5(9): 2747-2752, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32820626

RESUMO

With the current intense need for rapid and accurate detection of viruses due to COVID-19, we report on a platform technology that is well suited for this purpose, using intact measles virus for a demonstration. Cases of infection due to the measles virus are rapidly increasing, yet current diagnostic tools used to monitor for the virus rely on slow (>1 h) technologies. Here, we demonstrate the first biosensor capable of detecting the measles virus in minutes with no preprocessing steps. The key sensing element is an electrode coated with a self-assembled monolayer containing the measles antibody, immobilized through an N-heterocyclic carbene (NHC). The intact virus is detected by changes in resistance, giving a linear response to 10-100 µg/mL of the intact measles virus without the need to label or process the sample. The limit of detection is 6 µg/mL, which is at the lower limit of concentrations that can cause infections in primates. The NHC-based biosensors are shown to be superior to thiol-based systems, producing an approximately 10× larger response and significantly greater stability toward repeated measurements and long-term storage. This NHC-based biosensor thus represents an important development for both the rapid detection of the measles virus and as a platform technology for the detection of other biological targets of interest.


Assuntos
Anticorpos Imobilizados/imunologia , Benzimidazóis/química , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Vírus do Sarampo/isolamento & purificação , Anticorpos Imobilizados/química , Técnicas Eletroquímicas/instrumentação , Eletrodos , Ouro/química , Limite de Detecção , Vírus do Sarampo/imunologia
4.
Chemistry ; 26(50): 11431-11434, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32428330

RESUMO

Benzimidazolium hydrogen carbonate salts have been shown to act as N-heterocyclic carbene precursors, which can remove oxide from copper oxide surfaces and functionalize the resulting metallic surfaces in a single pot. Both the surfaces and the etching products were fully characterized by spectroscopic methods. Analysis of surfaces before and after NHC treatment by X-ray photoelectron spectroscopy demonstrates the complete removal of copper(II) oxide. By using 13 C-labelling, we determined that the products of this transformation include a cyclic urea, a ring-opened formamide and a bis-carbene copper(I) complex. These results illustrate the potential of NHCs to functionalize a much broader class of metals, including those prone to oxidation, greatly facilitating the preparation of NHC-based films on metals other than gold.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...