Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(12): 14331-14340, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32017528

RESUMO

Although graphene has considerable potential as a next-generation transparent conducting electrode (TCE) material owing to its excellent optical transparency and flexibility, its electrical properties require further improvement for industrial application. This study reports a pathway of doping graphene by selective atomic layer deposition (ALD) of metals to elevate the electrical conductivity of graphene. Introduction of a novel Pt precursor [dimethyl(N,N-dimethyl-3-butene-1-amine-N)platinum(II); C8H19NPt; DDAP] facilitates a low-temperature (165 °C) process. The sheet resistance (Rs) of graphene is reduced significantly from 471 to 86.8 Ω sq-1 after 200 cycles of Pt ALD, while the optical transmittance at 550 nm (T) is maintained above 90% up to 200 cycles due to the selective growth of Pt on the defects of graphene. Furthermore, comprehensive analysis, including metal (Ru, Pt, and Ni) ALD on graphene, metal (Ru, Pt, Ni, Au, and Co) evaporation on graphene, and change in the ALD chemicals, demonstrates that ALD allows efficient graphene doping and the oxygen affinity of the metal is one of the key properties for efficient graphene doping. Finally, Pt ALD is applied to a multilayer graphene to further reduce Rs down to 75.8 Ω sq-1 yet to be highly transparent (T: 87.3%) after 200 cycles. In summary, the selective ALD of metals opens a way of improving the electrical properties of graphene to a level required for the industrial TCE application and has the potential to promote development of other types of functional metal-graphene composites.

2.
Nanotechnology ; 31(9): 095708, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-31747645

RESUMO

A graphene/In2O3 bilayer (termed as GI-bilayer) is proposed as a transparent conducting electrode with remarkably improved areal-uniformity. To fabricate this new structure, an In2O3 layer with a thickness of less than 50 nm was grown by atomic layer deposition and then a graphene layer was grown by chemical vapor deposition and subsequently transferred onto the as-grown In2O3 layer. Electrical and optical properties of the GI-bilayer were systematically studied to verify effects of the underlying In2O3 layer. Hall measurements and following analysis showed a conductance enhancement of the GI-bilayer owing to p-type doping of graphene. Specifically, Raman analysis and ultraviolet photoelectron spectroscopy were performed to prove p-type doping of the graphene in the GI-bilayer. In addition, the GI-bilayer exhibited the significantly improved uniformity of the sheet resistance compared to that of a conventional monolayer of graphene. There was a duality on the role of the In2O3 underlayer in the GI-bilayer. It acted as a dopant layer to the graphene and lowered the sheet resistance from 863 to 510 Ω/sq as well as compensated microscale defects on graphene. More importantly, the In2O3 underlayer resulted in the extremely reduced standard deviation of sheet resistance from 150 to 7.5 Ω/sq over the area of 49 cm2.

3.
Nanoscale ; 7(30): 12820-7, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26172584

RESUMO

Graphene growth on liquid Cu has received great interest, owing to the self-assembly behavior of hexagonal graphene flakes with aligned orientation and to the possibility of forming a single grain of graphene through a commensurate growth of these graphene flakes. Here, we propose and demonstrate a two-step growth process which allows the formation of self-assembled, completely continuous graphene on liquid Cu. After the formation of full coverage on the liquid Cu, grain boundaries were revealed via selective hydrogen etching and the original grain boundaries were clearly resolved. This result indicates that, while the flakes self-assembled with the same orientation, there still remain structural defects, gaps and voids that were not resolved by optical microscopy or scanning electron microscopy. To overcome this limitation, the two-step growth process was employed, consisting of a sequential process of a normal single-layer graphene growth and self-assembly process with a low carbon flux, followed by the final stage of graphene growth at a high degree of supersaturation with a high carbon flux. Continuity of the flakes was verified via hydrogen etching and a NaCl-assisted oxidation process, as well as by measuring the electrical properties of the graphene grown by the two-step process. Two-step growth can provide a continuous graphene layer, but commensurate stitching should be further studied.

4.
Nanotechnology ; 23(11): 115301, 2012 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-22383433

RESUMO

We report here a rapid (10 s of heating) graphene growth method that can be carried out on any desired substrate, including an insulator, thus negating the need for the transfer from the metal substrate. This technique is based on metal-induced crystallization of amorphous carbon (a-C) to graphene, and involves an ultra-thin metal layer that is less than 10 nm in thickness. Rapid annealing of a bilayer of a-C and metal deposited on the surface leads to the formation of graphene film, and to subsequent breaking-up of the thin metal layer underneath the film, thus resulting in the formation of a graphene­metal hybrid film which is both transparent and electrically conducting. Based on Raman studies, we have also systematically compared ultra-thin metal-induced crystallization behavior with a case of conventional thick metal. Based on the present investigation, it was observed that the dominant growth mechanism in ultra-thin metal-induced crystallization is nucleation controlled.

5.
Adv Mater ; 24(3): 421-4, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22174102

RESUMO

Tip fabrication by a new strategy is proposed for simultaneous acquisition of electrochemical (EC) signals from an ultramicroelectrode and spectroscopic information from surface-enhanced Raman scattering (SERS). The EC-SERS tip is prepared by carefully tuning a SERS-active gold microshell to maximize Raman scattering, mechanically attaching it to the end of a micropipet, and electrically connecting it to a ruthenium inner layer through electroless deposition.


Assuntos
Ouro/química , Análise Espectral Raman , Adsorção , Eletroquímica , Piridinas/química
6.
Nanotechnology ; 22(9): 095305, 2011 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-21270488

RESUMO

Two-step atomic layer deposition (ALD) is proposed in order to control both the spatial density and size of nanocrystals (NCs) via modulation of the nucleation rate during deposition. In this process, two different deposition conditions are sequentially used: a high nucleation rate condition for the formation of high density NCs and a low nucleation rate condition with a slow growth rate for the subsequent growth of pre-formed NCs. To control the nucleation rate of Ru during ALD, pulsing time and carrier flow rate of the Ru precursor are varied. By controlling those factors, both the film growth rate and a nucleation rate of Ru are decreased considerably. Two-step ALD of Ru NCs using the surface-saturated condition followed by the reduced condition allows for variation of the spatial density from 7.9 × 10(11) to 3.2 × 10(12) cm(-2) and variation of the average diameter from 1.9 to 3.3 nm.


Assuntos
Cristalização/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Rubídio/química , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
7.
Nano Lett ; 10(9): 3324-9, 2010 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-20687522

RESUMO

We report on a novel fabrication method of a nanochannel ionic field effect transistor (IFET) structure with sub-10-nm dimensions. A self-sealing and self-limiting atomic layer deposition (ALD) facilitates the fabrication of lateral type nanochannels smaller than the e-beam or optical lithographic limits. Using highly conformal ALD film structures, including TiO(2), TiO(2)/TiN, and Al(2)O(3)/Ru, we have fabricated lateral sub-10-nm nanochannels with good control over channel diameter. Nanochannels surrounded by core/shell (high-k dielectric/metal) layers give rise to all-around-gating IFETs, an important functional element in an electrofluidic-based circuit system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...