Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38923889

RESUMO

Developing a non-noble metal-based bifunctional electrocatalyst with high efficiency and stability for overall water splitting is desirable for renewable energy systems. We developed a novel method to fabricate a heterostructured electrocatalyst, comprising a NiCoP nanoneedle array grown on Ti3C2Tx MXene-coated Ni foam (NCP-MX/NF) using a dip-coating hydrothermal method, followed by phosphorization. Due to the abundance of active sites, enhanced electronic kinetics, and sufficient electrolyte accessibility resulting from the synergistic effects of NCP and MXene, NCP-MX/NF bifunctional alkaline catalysts afford superb electrocatalytic performance, with a low overpotential (72 mV at 10 mA cm-2 for HER and 303 mV at 50 mA cm-2 for OER), a low Tafel slope (49.2 mV dec-1 for HER and 69.5 mV dec-1 for OER), and long-term stability. Moreover, the overall water splitting performance of NCP-MX/NF, which requires potentials as low as 1.54 and 1.76 V at a current density of 10 and 50 mA cm-2, respectively, exceeded the performance of the Pt/C∥IrO2 couple in terms of overall water splitting. Density functional theory (DFT) calculations for the NCP/Ti3C2O2 interface model predicted the catalytic contribution to interfacial formation by analyzing the electronic redistribution at the interface. This contribution was also evaluated by calculating the adsorption energetics of the descriptor molecules (H2O and the H and OER intermediates).

2.
Nanomaterials (Basel) ; 13(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37999315

RESUMO

Activated carbon (AC) compounds derived from biomass precursors have garnered significant attention as electrode materials in electric double-layer capacitors (EDLCs) due to their ready availability, cost-effectiveness, and potential for mass production. However, the accessibility of their active sites in electrochemistry has not been investigated in detail. In this study, we synthesized two novel macro/micro-porous carbon structures prepared from a chitosan precursor using an acid/potassium hydroxide activation process and then examined the relationship between their textural characteristics and capacitance as EDLCs. The material characterizations showed that the ACs, prepared through different activation processes, differed in porosity, with distinctive variations in particle shape. The sample activated at 800 °C (Act-chitosan) was characterized by plate-shaped particles, a specific surface area of 4128 m2/g, and a pore volume of 1.87 cm3/g. Assessment of the electrochemical characteristics of Act-chitosan showed its remarkable capacitance of 183.5 F/g at a scan rate of 5 mV/s, and it maintained exceptional cyclic stability even after 10,000 cycles. The improved electrochemical performance of both chitosan-derived carbon structures could thus be attributed to their large, well-developed active sites within pores < 2 nm, despite the fact that interconnected macro-porous particles can enhance ion accessibility on electrodes. Our findings provide a basis for the fabrication of biomass-based materials with promising applications in electrochemical energy storage systems.

3.
ACS Nano ; 17(19): 19387-19397, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37747920

RESUMO

The concept of integrating diverse functional 2D materials into a heterostructure provides platforms for exploring physics that cannot be accessed in a single 2D material. Here, physically mixing two 2D materials, MXene and MoS2, followed by freeze-drying is utilized to successfully fabricate a 3D MoS2/MXene van der Waals heterostructure aerogel. The low-temperature synthetic approach effectively suppresses significant oxidation of the Ti3C2Tx MXene and results in a hierarchical and freestanding 3D heterostructure composed of high-quality MoS2 and MXene nanosheets. Functionalization of MXene with a MoS2 catalytic layer substantially improves sensitivity and long-term stability toward detection of NO2 gas, and computational studies are coupled with experimental results to elucidate that the mechanism behind enhancements in the gas-sensing properties is effective inhibition of HNO2 formation on the MXene surface, due to the presence of MoS2. Overall, this study has a great potential for expansion of applicability to other classes of two-dimensional materials as a general synthesis method, to be applied in future fields of catalysis and electronics.

4.
Nanomaterials (Basel) ; 13(14)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37513086

RESUMO

Metallic-phase transition metal dichalcogenide quantum dots (TMDs-mQDs) have been reported in recent years. However, a dominant mechanism for modulating their intrinsic exciton behaviors has not been determined yet as their size is close to the Bohr radius. Herein, we demonstrate that the oxidation effect prevails over quantum confinement on metallic-phase tungsten dichalcogenide QDs (WX2-mQDs; X = S, Se) when the QD size becomes larger than the exciton Bohr radius. WX2-mQDs with a diameter of ~12 nm show an obvious change in their photophysical properties when the pH of the solution changes from 2 to 11 compared to changing the size from ~3 nm. Meanwhile, we found that quantum confinement is the dominant function for the optical spectroscopic results in the WX2-mQDs with a size of ~3 nm. This is because the oxidation of the larger WX2-mQDs induces sub-energy states, thus enabling excitons to migrate into the lower defect energy states, whereas in WX2-mQDs with a size comparable to the exciton Bohr radius, protonation enhances the quantum confinement.

5.
Materials (Basel) ; 17(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38203897

RESUMO

It is difficult to obtain ultrathin two-dimensional (2D) tungsten trioxide (WO3) nanosheets through direct exfoliation from bulk WO3 in solution due to the strong bonding between interlayers. Herein, WO3 nanosheets with controllable sizes were synthesized via K+ intercalation and the exfoliation of WO3 powder using sonication and temperature. Because of the intercalation and expansion in the interlayer distance, the intercalated WO3 could be successfully exfoliated to produce a large quantity of individual 2D WO3 nanosheets in N-methyl-2-pyrrolidone under sonication. The exfoliated ultrathin WO3 nanosheets exhibited better electrochromic performance in an electrochromic device than WO3 powder and exfoliated WO3 without intercalation. In particular, the prepared small WO3 nanosheets exhibited excellent electrochromic properties with a large optical modulation of 41.78% at 700 nm and fast switching behavior times of 9.2 s for bleaching and 10.5 s for coloring. Furthermore, after 1000 cycles, the small WO3 nanosheets still maintained 86% of their initial performance.

6.
ACS Appl Mater Interfaces ; 14(43): 48598-48608, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36256595

RESUMO

The kinetic-sluggish oxygen evolution reaction (OER) is the main obstacle in electrocatalytic water splitting for sustainable production of hydrogen energy. Efficient water electrolysis can be ensured by lowering the overpotential of the OER by developing highly active catalysts. In this study, a controlled electrophoretic deposition strategy was used to develop a binder-free spinel oxide nanoparticle-coated Ni foam as an efficient electrocatalyst for water oxidation. Oxygen evolution was successfully promoted using the CoFe2O4 catalyst, and it was optimized by modulating the electrophoretic parameters. When optimized, CoFe2O4 nanoparticles presented more active catalytic sites, superior charge transfer, increased ion diffusion, and favorable reaction kinetics, which led to a small overpotential of 287 mV for a current density of 10 mA cm-2, with a small Tafel slope of 43 mV dec-1. Moreover, the CoFe2O4 nanoparticle electrode exhibited considerable long-term stability over 100 h without detectable activity loss. The results demonstrate promising potential for large-scale water splitting using Earth-abundant oxide materials via a simple and cheap fabrication process.

7.
Front Aging Neurosci ; 14: 914491, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35936771

RESUMO

Rac1 is critically involved in the regulation of the actin cytoskeleton, neuronal structure, synaptic plasticity, and memory. Rac1 overactivation is reported in human patients and animal models of Alzheimer's disease (AD) and contributes to their spatial memory deficits, but whether Rac1 dysregulation is also important in other forms of memory deficits is unknown. In addition, the cell types and synaptic mechanisms involved remain unclear. In this study, we used local injections of AAV virus containing a dominant-negative (DN) Rac1 under the control of CaMKIIα promoter and found that the reduction of Rac1 hyperactivity in ventral hippocampal excitatory neurons improves social recognition memory in APP/PS1 mice. Expression of DN Rac1 also improves long-term potentiation, a key synaptic mechanism for memory formation. Our results suggest that overactivation of Rac1 in hippocampal excitatory neurons contributes to social memory deficits in APP/PS1 mice and that manipulating Rac1 activity may provide a potential therapeutic strategy to treat social deficits in AD.

8.
Adv Sci (Weinh) ; 9(29): e2203008, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35988149

RESUMO

Individual carbon nanotubes (CNT) and graphene have unique mechanical and electrical properties; however, the properties of their macroscopic assemblies have not met expectations because of limited physical dimensions, the limited degree of dispersion of the components, and various structural defects. Here, a state-of-the-art assembly for a novel type of hybrid fiber possessing the properties required for a wide variety of multifunctional applications is presented. A simple and effective multidimensional nanostructure of CNT and graphene oxide (GO) assembled by solution processing improves the interfacial utilization of the components. Flexible GOs are effectively intercalated between nanotubes along the shape of CNTs, which reduces voids, enhances orientation, and maximizes the contact between elements. The microstructure is finely controlled by the elements content ratio and dimensions, and an optimal balance improves the mechanical properties. The hybrid fibers simultaneously exhibit exceptional strength (6.05 GPa), modulus (422 GPa), toughness (76.8 J g-1 ), electrical conductivity (8.43 MS m-1 ), and knot strength efficiency (92%). Furthermore, surface and electrochemical properties are significantly improved by tuning the GO content, further expanding the scope of applications. These hybrid fibers are expected to offer a strategy for overcoming the limitations of existing fibers in meeting the requirements for applications in the fiber industry.

9.
mBio ; 13(4): e0174922, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35968954

RESUMO

ß-Lactamase production facilitates bacterial survival in nature and affects many infection therapies. However, much of its regulation remains unexplored. We used a genetics-based approach to identify a two-component system (TCS) present in a strain of Burkholderia thailandensis essential for the regulated expression of a class A ß-lactamase gene, penL, by sensing subtle envelope disturbance caused by ß-lactams, polymyxin B, or other chemical agents. The genes encoding stress responses and resistance to various antibiotics were coregulated, as were the catabolic genes that enabled the B. thailandensis strain to grow on penicillin G or phenylacetate, a degradation product of penicillin G. This regulon has likely evolved to facilitate bacterial survival in the soil microbiome that contains a multitude of antibiotic producers. Practically, this regulatory system makes this TCS, which we named BesRS, an excellent drug target for the purpose of increasing antibiotic efficacy in combination therapies for Burkholderia infections. IMPORTANCE ß-lactam antibiotics are the most frequently used drugs to treat infectious diseases. Although the production of ß-lactamases by bacteria is the main cause of treatments being compromised, much of the gene regulation mechanism governing the levels of these enzymes has not been fully explored. In this study, we report a novel ß-lactamase gene regulation mechanism that is governed by a two-component system responding to disturbances in the cell envelope. We showed gene regulation is a part of a regulon that includes genes involved in stress responses, resistance to various antibiotics, and a catabolic pathway for ß-lactams. This regulon may have been evolved to facilitate bacterial survival in the soil niches, which are highly competitive environments because of the presence of various antibiotic-producing microbes. The discovery of the ß-lactamase gene regulation mechanism opens new avenues for developing therapeutic strategies in the fight against antibiotic resistance.


Assuntos
Regulon , beta-Lactamases , Antibacterianos/farmacologia , Solo , beta-Lactamases/genética , beta-Lactamases/metabolismo , beta-Lactamas/farmacologia
10.
Nanomaterials (Basel) ; 12(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35630867

RESUMO

Transition metal dichalcogenide-based quantum dots are promising materials for applications in diverse fields, such as sensors, electronics, catalysis, and biomedicine, because of their outstanding physicochemical properties. In this study, we propose bio-imaging characteristics through utilizing water-soluble MoS2 quantum dots (MoS2-QDs) with two different sizes (i.e., ~5 and ~10 nm). The structural and optical properties of the fabricated metallic phase MoS2-QDs (m-MoS2-QDs) were characterized by transmission electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, UV-vis absorption spectroscopy, and photoluminescence. The synthesized m-MoS2-QDs showed clear photophysical characteristic peaks derived from the quantum confinement effect and defect sites, such as oxygen functional groups. When the diameter of the synthesized m-MoS2-QD was decreased, the emission peak was blue-shifted from 436 to 486 nm under excitation by a He-Cd laser (325 nm). Density functional theory calculations confirmed that the size decrease of m-MoS2-QDs led to an increase in the bandgap because of quantum confinement effects. In addition, when incorporated into the bio-imaging of HeLa cells, m-MoS2-QDs were quite biocompatible with bright luminescence and exhibited low toxicity. Our results are commercially applicable for achieving high-performance bio-imaging probes.

11.
Sci Adv ; 8(16): eabn0939, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35452295

RESUMO

Theoretical considerations suggest that the strength of carbon nanotube (CNT) fibers be exceptional; however, their mechanical performance values are much lower than the theoretical values. To achieve macroscopic fibers with ultrahigh performance, we developed a method to form multidimensional nanostructures by coalescence of individual nanotubes. The highly aligned wet-spun fibers of single- or double-walled nanotube bundles were graphitized to induce nanotube collapse and multi-inner walled structures. These advanced nanostructures formed a network of interconnected, close-packed graphitic domains. Their near-perfect alignment and high longitudinal crystallinity that increased the shear strength between CNTs while retaining notable flexibility. The resulting fibers have an exceptional combination of high tensile strength (6.57 GPa), modulus (629 GPa), thermal conductivity (482 W/m·K), and electrical conductivity (2.2 MS/m), thereby overcoming the limits associated with conventional synthetic fibers.

12.
Artigo em Inglês | MEDLINE | ID: mdl-35286242

RESUMO

This study involved analysis and method validation of spirotetramat applied to two phenotypically different Korean vegetables (e.g. Korean cabbage and shallots) to determine the safe pre-harvest residue limit (PHRL) and comparative dissipation patterns. Two steps of the investigation involved greenhouse monitoring during crop cultivation followed by LC-MS/MS analysis. Commercial spirotetramat was sprayed twice with seven-day intervals according to the spray schedule (0, 3, 7, 10, 14, and 21 days before harvest) at the dose recommended by the Ministry of Food and Drug Safety (MFDS), Korea. During the validation of the analytical method, good linearity, specificity, and acceptable recoveries (82%-114% for Korean cabbage and 82%-111% for shallot) were established for spirotetramat and its four metabolites. The calculated biological half-life derived from the first-order reaction (t1/2) of spirotetramat was 4.8 days for Korean cabbage and 4.0 days for shallot, respectively. The safe PHRL for Korean cabbage was suggested at 7 days, due to permissible spirotetramat concentration in terms of an acceptable MRL. The findings of the study will be used as the analytical reference point for developing spirotetramat safety guidelines for use in the vegetables investigated.


Assuntos
Brassica , Inseticidas , Resíduos de Praguicidas , Compostos Aza , Brassica/química , Cromatografia Líquida/métodos , Meia-Vida , Inseticidas/análise , Resíduos de Praguicidas/análise , Compostos de Espiro , Espectrometria de Massas em Tandem/métodos , Verduras/metabolismo
13.
J Paediatr Child Health ; 58(6): 1053-1059, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35170119

RESUMO

AIM: The transition from paediatric to adult care for patients with inflammatory bowel disease (IBD) is associated with an increased risk of treatment non-adherence, hospitalizations and emergency department (ED) use. We established a new young adult IBD clinic (YAC) in Melbourne to capture this at-risk population. We aimed to assess patient satisfaction as well as clinical outcomes. METHODS: All patients who attended the YAC between its inception in November 2016 and November 2018 were recruited to our YAC group, 61 patients in total. A control group was selected from the pre-existing adult clinic (AC) at our service, 34 patients in total. IBD-related ED (IBD-ED) visits were collected for all patients. We compared IBD-ED visits in the 2 years before and after attending the clinic for the first time. Patient satisfaction was assessed using the IBD-Patient Satisfaction Questionnaire. RESULTS: There was an overall decrease in IBD-ED visits between the pre-clinic and post-clinic periods in both the YAC (42.9% reduction) and AC (69.2% reduction) (P < 0.001). Patient satisfaction was high amongst both services with YAC patients indicating higher satisfaction with communication (P = 0.015). CONCLUSION: There was a reduction in IBD-ED visits in both the YAC and the AC, high patient satisfaction, and statistically higher satisfaction with communication in the YAC. We speculate the importance of a YAC is to capture those patients in the peri-transitional period at risk of being lost to follow-up or not previously referred for specialist care.


Assuntos
Doenças Inflamatórias Intestinais , Transição para Assistência do Adulto , Criança , Doença Crônica , Serviço Hospitalar de Emergência , Hospitalização , Humanos , Doenças Inflamatórias Intestinais/terapia , Satisfação do Paciente , Adulto Jovem
14.
Free Radic Res ; 56(11-12): 713-729, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36794395

RESUMO

Heart ischemia/reperfusion (I/R) injury is related to iron content. However, the occurrence and mechanism of changes in labile iron pool (LIP) during I/R is debatable. Moreover, the identity of the iron form dominant in LIP during I/R is unclear. Herein, we measured changes of LIP during simulated ischemia (SI) and reperfusion (SR), in which ischemia was simulated in vitro with lactic acidosis and hypoxia. Total LIP did not change in lactic acidosis, whereas LIP, especially Fe3+, increased in hypoxia. Under SI, accompanied by hypoxia with acidosis, both Fe2+ and Fe3+ were significantly increased. Increased total LIP was maintained at 1 h post-SR. However, the Fe2+ and Fe3+ portion was changed. The increased Fe2+ was decreased, and conversely the Fe3+ was increased. BODIPY oxidized signal increased and through the time-course these changes correlated with blebbing of cell membrane and SR-induced LDH release. These data suggested lipid peroxidation occurred via Fenton's reaction. The experiments using bafilomycin A1 and zinc protoporphyrin suggested no role of ferritinophagy or heme oxidation in the increase of LIP during SI. The extracellular source, transferrin assessed using serum transferrin bound iron (TBI) saturation showed that the depletion of TBI reduced SR-induced cell damages and additive saturation of TBI accelerated SR-induced lipid peroxidation. Furthermore, Apo-Tf dramatically blocked the increase of LIP and SR-induced damages. In conclusion, Tf-mediated iron induces the increase of LIP during SI, and it causes Fenton reaction-mediated lipid peroxidation during the early phase of SR.


Assuntos
Acidose Láctica , Traumatismo por Reperfusão , Humanos , Ferro/metabolismo , Transferrina/metabolismo , Peroxidação de Lipídeos , Isquemia , Reperfusão , Hipóxia
15.
Small ; 17(46): e2103306, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34651436

RESUMO

All-solid-state batteries (ASSBs) based on ceramic materials are considered a key technology for automobiles and energy storage systems owing to their high safety and stability. However, contact issues between the electrode and solid-electrolyte materials and undesired chemical reaction occurring at interfaces have hindered their development. Herein, the chemical compatibility and structural stability of composite mixtures of the layered cathode materials Li1- x Ni0.5 Co0.2 Mn0.3 O2 (NCM523) with the garnet-type solid electrolyte Li6.25 Ga0.25 La3 Zr2 O12 (LLZO-Ga) during high-temperature co-sintering under various gas flowing conditions are investigated. In situ high-temperature X-ray diffraction analysis of the composite materials reveals that Li diffusion from LLZO-Ga to NCM523 occurs at high temperature under synthetic air atmosphere, resulting in the decomposition of LLZO-Ga into La2 Zr2 O7 and the recovery of charged NCM523 to the as-prepared state. The structural stability of the composite mixture at high temperature is further investigated under N2 atmosphere, revealing that Li diffuses toward the opposite direction and involves the phase transition of LLZO-Ga from a cubic to tetragonal structure and the reduction of the NCM523 cathode to Ni metal. These findings provide insight into the structural stability of layered cathode and garnet-type solid-electrolyte composite materials and the design of stable interfaces between them via co-sintering for ASSBs.

16.
Mol Brain ; 14(1): 121, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315506

RESUMO

Accumulating evidence indicates that the actin regulator cofilin is overactivated in Alzheimer's Disease (AD), but whether this abnormality contributes to synaptic and cognitive impairments in AD is unclear. In addition, the brain region and cell types involved remain unknown. In this study, we specifically manipulate LIMK1, the key protein kinase that phosphorylates and inactivates cofilin, in the hippocampus of APP/PS1 transgenic mice. Using local injections of the AAV virus containing LIMK1 under the control of the CaMKIIα promoter, we show that expression of LIMK1 in hippocampal excitatory neurons increases cofilin phosphorylation (i.e., decreases cofilin activity), rescues impairments in long-term potentiation, and improves social memory in APP/PS1 mice. Our results suggest that deficits in LIMK1/cofilin signaling in the hippocampal excitatory neurons contribute to AD pathology and that manipulations of LIMK1/cofilin activity provide a potential therapeutic strategy to treat AD.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Hipocampo/patologia , Quinases Lim/metabolismo , Memória , Plasticidade Neuronal , Neurônios/metabolismo , Presenilina-1/metabolismo , Reconhecimento Psicológico , Fatores de Despolimerização de Actina/metabolismo , Animais , Proteínas de Fluorescência Verde/metabolismo , Potenciação de Longa Duração , Camundongos Transgênicos , Fosforilação , Comportamento Social
17.
Adv Sci (Weinh) ; 8(10): 2004029, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34026449

RESUMO

Biodegradable electronics are disposable green devices whose constituents decompose into harmless byproducts, leaving no residual waste and minimally invasive medical implants requiring no removal surgery. Stretchable and flexible form factors are essential in biointegrated electronic applications for conformal integration with soft and expandable skins, tissues, and organs. Here a fully biodegradable MgZnCa metallic glass (MG) film is proposed for intrinsically stretchable electrodes with a high yield limit exploiting the advantages of amorphous phases with no crystalline defects. The irregular dissolution behavior of this amorphous alloy regarding electrical conductivity and morphology is investigated in aqueous solutions with different ion species. The MgZnCa MG nanofilm shows high elastic strain (≈2.6% in the nano-tensile test) and offers enhanced stretchability (≈115% when combined with serpentine geometry). The fatigue resistance in repeatable stretching also improves owing to the wide range of the elastic strain limit. Electronic components including the capacitor, inductor, diode, and transistor using the MgZnCa MG electrode support its integrability to transient electronic devices. The biodegradable triboelectric nanogenerator of MgZnCa MG operates stably over 50 000 cycles and its fatigue resistant applications in mechanical energy harvesting are verified. In vitro cell toxicity and in vivo inflammation tests demonstrate the biocompatibility in biointegrated use.

18.
Int J Mol Sci ; 22(7)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916086

RESUMO

Fibrates, including fenofibrate, are a class of hypolipidemic drugs that activate peroxisome proliferator-activated receptor α (PPARα), which in-turn regulates the expression of lipid and lipoprotein metabolism genes. We investigated whether fenofibrate can reduce visceral obesity and nonalcoholic fatty liver disease via adipose tissue PPARα activation in female ovariectomized (OVX) C57BL/6J mice fed a high-fat diet (HFD), a mouse model of obese postmenopausal women. Fenofibrate reduced body weight gain (-38%, p < 0.05), visceral adipose tissue mass (-46%, p < 0.05), and visceral adipocyte size (-20%, p < 0.05) in HFD-fed obese OVX mice. In addition, plasma levels of alanine aminotransferase and aspartate aminotransferase, as well as free fatty acids, triglycerides, and total cholesterol, were decreased. Fenofibrate also inhibited hepatic lipid accumulation (-69%, p < 0.05) and infiltration of macrophages (-72%, p < 0.05), while concomitantly upregulating the expression of fatty acid ß-oxidation genes targeted by PPARα and decreasing macrophage infiltration and mRNA expression of inflammatory factors in visceral adipose tissue. These results suggest that fenofibrate inhibits visceral obesity, as well as hepatic steatosis and inflammation, in part through visceral adipose tissue PPARα activation in obese female OVX mice.


Assuntos
Dislipidemias/prevenção & controle , Fígado Gorduroso/prevenção & controle , Fenofibrato/uso terapêutico , Hipolipemiantes/uso terapêutico , Obesidade Abdominal/prevenção & controle , Adipócitos/efeitos dos fármacos , Animais , Dieta Hiperlipídica , Avaliação Pré-Clínica de Medicamentos , Feminino , Fenofibrato/farmacologia , Hipolipemiantes/farmacologia , Gordura Intra-Abdominal/metabolismo , Camundongos Endogâmicos C57BL , Ovariectomia , PPAR gama/metabolismo
19.
J Nanosci Nanotechnol ; 21(9): 4902-4907, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33691887

RESUMO

Dramatic increases in fossil fuel consumption inevitably led to the emission of huge amounts of CO2 gas, causing abnormalities in the climate system. Despite continuous efforts to resolve global atmospheric problems through CO2 capture and separation, success has been limited by poor CO2 selectivity in the CO2/N2 mixture. Herein, we demonstrate the fabrication of a three-dimensional (3D) nanostructure from two-dimensional transition metal carbides (Ti3C2Tx, MXene), and assess its utility as an adsorbent in a CO2 capture system. Through structural and textural analysis, we confirm that the as-prepared MXene possesses high size uniformity with a thickness of ~2.5 nm, and that an MXene aerogel interconnected by MXene nanosheets has a 3D porous architecture with micro/nano porosity (Barrett-Joyner-Halenda (BJH) pore size = 11.4 nm). Moreover, the MXene aerogel exhibits favorable adsorption behavior for CO2, due to the high-quality MXene nanosheets even with a low specific surface area. Our approach could lead to significant advances in CO2 capture by adsorbents and open up new opportunities for mass production.

20.
Clin Hypertens ; 27(1): 4, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33494809

RESUMO

Smartphone technology has spread rapidly around the globe. According to a report released by the Korea Information Society Development Institute, about 95% of Koreans aged more than 30 years old owned smartphones. Recently, blood pressure (BP) measurement using a photoplethysmography-based smartphone algorithm paired with the smartwatch is continuously evolving. In this document, the Korean Society of Hypertension intends to remark the current results of smartphone / smartwatch-based BP measurement and recommend optimal BP measurement methods using a smartphone device. We aim to increase the likelihood of success in implementing these new technologies into improved hypertension awareness, diagnosis, and control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...