Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 61(28): e202203250, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35445524

RESUMO

Fused aromatic networks (FANs) have been studied in efforts to overcome the low physicochemical stability of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), while preserving crystallinity. Herein, we describe the synthesis of a highly stable and crystalline FAN (denoted as Pz-FAN) using pyrazine-based building blocks to form porphyrazine (Pz) linkages via an irreversible reaction. Unlike most COFs and FANs, which are synthesized from two different building blocks, the new Pz-FAN is formed using a single building block by self-cyclotetramerization. Controlled and optimized reaction conditions result in a highly crystalline Pz-FAN with physicochemical stability. The newly prepared Pz-FAN displayed a high magnitude (1.16×10-2  S cm-1 ) of proton conductivity compared to other reported FANs and polymers. Finally, the Pz-FAN-based membrane was evaluated for a proton-exchange membrane fuel cell (PEMFC), which showed maximum power and current densities of 192 mW cm-2 and 481 mA cm-2 , respectively.

2.
Adv Mater ; 31(20): e1804826, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30561780

RESUMO

The ongoing surge in demand for high-performance energy storage systems inspires the relentless pursuit of advanced materials and structures. Components of energy storage systems are generally based on inorganic/metal compounds, carbonaceous substances, and petroleum-derived hydrocarbon chemicals. These traditional materials, however, may have difficulties fulfilling the ever-increasing requirements of energy storage systems. Recently, nanocellulose has garnered considerable attention as an exceptional 1D element due to its natural abundance, environmental friendliness, recyclability, structural uniqueness, facile modification, and dimensional stability. Recent advances and future outlooks of nanocellulose as a green material for energy storage systems are described, with a focus on its application in supercapacitors, lithium-ion batteries (LIBs), and post-LIBs. Nanocellulose is typically classified as cellulose nanofibril (CNF), cellulose nanocrystal (CNC), and bacterial cellulose (BC). The unusual 1D structure and chemical functionalities of nanocellulose bring unprecedented benefits to the fabrication and performance of energy storage materials and systems, which lie far beyond those achievable with conventional synthetic materials. It is believed that this progress report can stimulate research interests in nanocellulose as a promising material, eventually widening material horizons for the development of next-generation energy storage systems, that will lead us closer to so-called Battery-of-Things (BoT) era.

3.
ACS Appl Mater Interfaces ; 10(26): 22210-22217, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29882645

RESUMO

The increasing demand for advanced rechargeable batteries spurs development of new power sources beyond currently most widespread lithium-ion batteries. Here, we demonstrate a new class of flexible/rechargeable zinc (Zn)-air batteries based on multifunctional heteronanomat architecture as a scalable/versatile strategy to address this issue. In contrast to conventional electrodes that are mostly prepared by slurry-casting techniques, heteronanomat (denoted as "HM") framework-supported electrodes are fabricated through one-pot concurrent electrospraying (for electrode powders/single-walled carbon nanotubes (SWCNTs)) and electrospinning (for polyetherimide (PEI) nanofibers) process. Zn powders (in anodes) and rambutan-shaped cobalt oxide (Co3O4)/multiwalled carbon nanotube (MWCNT) composite powders (in cathodes) are used as electrode active materials for proof of concept. The Zn (or Co3O4/MWCNT) powders are densely packed and spatially bound by the all-fibrous HM frameworks that consist of PEI nanofibers (for structural stability)/SWCNTs (for electrical conduction) networks, leading to the formation of three-dimensional bicontinuous ion/electron transport channels in the electrodes. The HM electrodes are assembled with cross-linked polyvinyl alcohol/polyvinyl acrylic acid gel polymer electrolytes (acting as zincate ion crossover-suppressing, permselective separator membranes). Benefiting from its unique structure and chemical functionalities, the HM-structured Zn-air cell significantly improves mechanical flexibility and electrochemical rechargeability, which are difficult to achieve with conventional Zn-air battery technologies.

4.
ACS Appl Mater Interfaces ; 9(27): 22568-22577, 2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28603967

RESUMO

Cellulose, which is one of the most-abundant and -renewable natural resources, has been extensively explored as an alternative substance for electrode materials such as activated carbons. Here, we demonstrate a new class of coffee-mediated green activation of cellulose as a new environmentally benign chemical-activation strategy and its potential use for all-paper flexible supercapacitors. A piece of paper towel is soaked in espresso coffee (acting as a natural activating agent) and then pyrolyzed to yield paper-derived activated carbons (denoted as "EK-ACs"). Potassium ions (K+), a core ingredient of espresso, play a viable role in facilitating pyrolysis kinetics and also in achieving a well-developed microporous structure in the EK-ACs. As a result, the EK-ACs show significant improvement in specific capacitance (131 F g-1 at a scan rate of 1.0 mV s-1) over control ACs (64 F g-1) obtained from the carbonization of a pristine paper towel. All-paper flexible supercapacitors are fabricated by assembling EK-ACs/carbon nanotube mixture-embedded paper towels (as electrodes), poly(vinyl alcohol)/KOH mixture-impregnated paper towels (as electrolytes), and polydimethylsiloxane-infiltrated paper towels (as packaging substances). The introduction of the EK-ACs (as an electrode material) and the paper towel (as a deformable and compliant substrate) enables the resulting all-paper supercapacitor to provide reliable and sustainable cell performance as well as exceptional mechanical flexibility. Notably, no appreciable loss in the cell capacitance is observed after repeated bending (over 5000 cycles) or multiple folding. The coffee-mediated green activation of cellulose and the resultant all-paper flexible supercapacitors open new material and system opportunities for eco-friendly high-performance flexible power sources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...