Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pflugers Arch ; 472(5): 571-581, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32382986

RESUMO

Fetuin-B is a serum protein linked to the regulation of physiological or pathophysiological events such as fertility, energy metabolism, and liver disease. Recently, fetuin-B has been reported to be involved in the modulation of the rupture of atherosclerotic plaques associated with acute myocardial infarction. However, the exact mechanism involved in the modulation of atherosclerotic plaque rupture event by fetuin-B is not fully elucidated yet. In the present study, we investigated whether fetuin-B could influence atherosclerotic plaque rupture through vascular smooth muscle cells (VSMCs). Immunoprecipitation assay using membrane proteins from VSMCs revealed that fetuin-B tightly bound to transforming growth factor-ß receptor (TGF-ßR). Fetuin-B treatment elevated TGF-ßR signals (e.g., phosphorylation of Smad2 and Smad3) in VSMCs. Fetuin-B also stimulated nuclear translocation of phosphorylated Smads. Phosphorylation of Smad and its nuclear translocation by treatment with fetuin-B were inhibited in VSMCs by treatment with SB431542, a selective inhibitor of TGF-ßR. Fetuin-B enhanced expression levels of plasminogen activator inhibitor-1 (PAI-1) and matrix metalloproteinase-2 (MMP-2) in VSMCs through its epigenetic modification including recruitments of both histone deacetylase 1 and RNA polymerase II. These epigenetic alterations in VSMCs were also inhibited by treatment with SB431542. In vivo administration of fetuin-B protein increased expression levels of PAI-1 and MMP-2 in the vascular plaque. However, these increases in expression were inhibited by the administration of SB43154. These results indicate that fetuin-B may modulate vascular plaque rupture by promoting expression of PAI-1 and MMP-2 in VSMCs via TGF-ßR-mediated Smad pathway.


Assuntos
Fetuína-B/metabolismo , Miócitos de Músculo Liso/metabolismo , Placa Aterosclerótica/metabolismo , Animais , Benzamidas/farmacologia , Vasos Sanguíneos/citologia , Células Cultivadas , Dioxóis/farmacologia , Humanos , Masculino , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo
2.
Int J Mol Sci ; 20(19)2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31597276

RESUMO

Chrysanthemum boreale Makino essential oil (CBMEO) has diverse biological activities including a skin regenerating effect. However, its role in muscle atrophy remains unknown. This study explored the effects of CBMEO and its active ingredients on skeletal muscle atrophy using in vitro and in vivo models of muscle atrophy. CBMEO reversed the size decrease of L6 myoblasts under starvation. Among the eight monoterpene compounds of CBMEO without cytotoxicity for L6 cells, sabinene induced predominant recovery of reductions of myotube diameters under starvation. Sabinene diminished the elevated E3 ubiquitin ligase muscle ring-finger protein-1 (MuRF-1) expression and p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase1/2 (ERK1/2) phosphorylations in starved myotubes. Moreover, sabinene decreased the increased level of reactive oxygen species (ROS) in myotubes under starvation. The ROS inhibitor antagonized expression of MuRF-1 and phosphorylation of MAPKs, which were elevated in starved myotubes. In addition, levels of muscle fiber atrophy and MuRF-1 expression in gastrocnemius from fasted rats were reduced after administration of sabinene. These findings demonstrate that sabinene, a bioactive component from CBMEO, may attenuate skeletal muscle atrophy by regulating the activation mechanism of ROS-mediated MAPK/MuRF-1 pathways in starved myotubes, probably leading to the reverse of reduced muscle fiber size in fasted rats.


Assuntos
Monoterpenos Bicíclicos/farmacologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/prevenção & controle , Transdução de Sinais/efeitos dos fármacos , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Masculino , Músculo Esquelético/patologia , Atrofia Muscular/etiologia , Atrofia Muscular/patologia , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo
3.
Gen Physiol Biophys ; 38(6): 505-512, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31588917

RESUMO

In a previous study, we produced antibodies from rats immunized with human umbilical vein endothelial cells (HUVECs) and determined the vascular function of the monoclonal antibodies. However, unanswered question remains still about their role in vascular function. The current study explored vasoreactivity, in particular, focusing on the vascular contractility of a functional antibody against proteins expressed on the plasma membrane of HUVECs developed in a previous study. Among the antibodies developed, A-7 significantly attenuated endothelium-dependent vasorelaxation in response to acetylcholine (ACh) but not to sodium nitroprusside or histamine. In addition, the A-7 antibody did not affect norepinephrine-stimulated contraction in both endothelium-intact and -denuded aorta. Immunocytochemical and immunoblotting analyses showed that A-7 attenuated ACh-increased expression of ACh receptor on the plasma membrane of HUVECs. These findings suggest that the monoclonal A-7 antibody may act as an inhibitor of endothelium-dependent vasorelaxation, probably in part via downregulation of ACh receptor expression.


Assuntos
Células Endoteliais , Veias Umbilicais , Vasodilatação , Animais , Anticorpos Monoclonais , Endotélio Vascular , Humanos , Óxido Nítrico , Ratos , Receptores Colinérgicos
4.
Pflugers Arch ; 470(7): 1103-1113, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29511860

RESUMO

DJ-1 and sphingosine-1-phosphate (S1P) receptors (S1PRs) are implicated in the control of physiology and pathophysiology of cardiovascular systems such as blood pressure, atherosclerosis, and restenosis. Here, we investigated whether DJ-1 with antioxidant function participates in the regulation of S1PR1 and S1PR2 expression in vascular smooth muscle cells (VSMCs) and whether this response is related to vascular neointima formation. In vitro studies used cellular migration assay, western blot, reverse transcriptase and real-time PCR analysis, and immunocytochemistry. In vivo studies were performed using the carotid artery ligation model together with immunohistochemistry in DJ-1 knockout (DJKO) and corresponding wild-type (DJWT) mice. S1P stimulated migration of VSMCs from DJKO and DJWT mice. VSMC migration was suppressed by S1PR1 inhibitor but was elevated by S1PR2 inhibitor. Compared with DJWT mice, S1PR1 expression was higher in VSMCs and neointimal plaque from DJKO mice, but S1PR2 expression was lower. Overexpression of DJ-1 in DJKO VSMCs reduced S1PR1 expression and elevated S1PR2 expression. Compared with DJWT mice, histone deacetylase-1 recruitment and histone H3 acetylation at the S1PR1 promoter region were lower and higher, respectively, but this pattern was reversed at the S1PR2 promoter region in DJKO VSMCs. S1PR expressions and epigenetic changes at S1PR promoter regions in DJWT VSMCs treated with H2O2 showed similar patterns to those in DJKO VSMCs. Our findings suggest that DJ-1 may be involved in the regulation of S1PR1 and S1PR2 expression via H2O2-mediated histone modification in VSMCs. Consequently, this modification may affect S1P-induced VSMC migration and be related to vascular neointima formation.


Assuntos
Epigênese Genética/genética , Músculo Liso Vascular/fisiologia , Neointima/genética , Pró-Proteína Convertases/genética , Proteína Desglicase DJ-1/genética , Receptores de Lisoesfingolipídeo/genética , Serina Endopeptidases/genética , Acetilação/efeitos dos fármacos , Animais , Aterosclerose/genética , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Epigênese Genética/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Masculino , Camundongos , Camundongos Knockout , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
5.
Atherosclerosis ; 240(2): 367-73, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25875388

RESUMO

OBJECTIVE: Carvacrol (2-methyl-5-(1-methylethyl) phenol), a cyclic monoterpene, exerts protective activities in a variety of pathological states including tumor growth, inflammation, and oxidative stress. However, it is unknown whether carvacrol affects events in vascular cells during the development of atherosclerotic neointima. We investigated the effects of carvacrol on the migration and proliferation of rat aortic smooth muscle cells (RASMCs) and on vascular neointima formation. METHODS AND RESULTS: Carvacrol significantly inhibited platelet-derived growth factor (PDGF)-BB-stimulated RASMC migration and proliferation in a concentration-dependent manner. Cell viability was not affected by treatment with carvacrol. Carvacrol attenuated the expression of NADPH oxidase (NOX) 1 and the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase 1/2 in response to PDGF-BB. Moreover, carvacrol suppressed the PDGF-BB-stimulated generation of H2O2 and inhibited the activity of NOX in RASMCs. Treatment with carvacrol inhibited PDGF-BB-induced aortic sprout outgrowth, balloon injury-evoked vascular neointima formation, and expression of proliferating cell nuclear antigen in the neointima. CONCLUSION: These findings indicate that carvacrol inhibits migration and proliferation of RASMCs by suppressing the reactive oxygen species-mediated MAPK signaling pathway in these cells, thereby attenuating vascular neointimal formation. Carvacrol may be a promising agent for preventing vascular restenosis or atherosclerosis.


Assuntos
Antioxidantes/farmacologia , Aterosclerose/prevenção & controle , Lesões das Artérias Carótidas/tratamento farmacológico , Monoterpenos/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Neointima , Espécies Reativas de Oxigênio/metabolismo , Animais , Aterosclerose/metabolismo , Aterosclerose/patologia , Becaplermina , Lesões das Artérias Carótidas/metabolismo , Lesões das Artérias Carótidas/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cimenos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Peróxido de Hidrogênio/metabolismo , Masculino , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , NADH NADPH Oxirredutases/metabolismo , NADPH Oxidase 1 , Neovascularização Fisiológica/efeitos dos fármacos , Fosforilação , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas Proto-Oncogênicas c-sis/farmacologia , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
Arch Toxicol ; 89(10): 1871-80, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25787151

RESUMO

Azole antifungals such as ketoconazole are generally known to induce a variety of heart function side effects, e.g., long-QT syndrome and ventricular arrhythmias. However, a clear mechanism for the action of ketoconazole in heart cells has not been reported. In the present study, we assessed the correlation between ketoconazole-induced apoptosis and the alteration of genes in response to ketoconazole in rat cardiomyocytes. Cardiomyocyte viability was significantly inhibited by treatment with ketoconazole. Ketoconazole also stimulated H2O2 generation and TUNEL-positive apoptosis in a dose-dependent manner. DNA microarray technology revealed that 10,571 genes were differentially expressed by more than threefold in ketoconazole-exposed cardiomyocytes compared with untreated controls. Among these genes, parkin, which encodes a component of the multiprotein E3 ubiquitin ligase complex, was predominantly overexpressed among those classified as apoptosis- and reactive oxygen species (ROS)-related genes. The expression of parkin was also elevated in cardiomyocytes treated with exogenous H2O2. Moreover, cell viability and apoptosis in response to ketoconazole were inhibited in cardiomyocytes treated with ROS inhibitors and transfected with parkin siRNA. From the present findings, we concluded that ketoconazole may increase the expression of parkin via the ROS-mediated pathway, which consequently results in the apoptosis and decreased viability of cardiomyocytes.


Assuntos
Apoptose/efeitos dos fármacos , Cetoconazol/toxicidade , Miócitos Cardíacos/efeitos dos fármacos , Ubiquitina-Proteína Ligases/genética , Animais , Antifúngicos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Marcação In Situ das Extremidades Cortadas , Miócitos Cardíacos/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...