Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 132(5)2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30683797

RESUMO

The Caenorhabditis elegans aminophospholipid translocase TAT-1 maintains phosphatidylserine (PS) asymmetry in the plasma membrane and regulates endocytic transport. Despite these important functions, the structure-function relationship of this protein is poorly understood. Taking advantage of the tat-1 mutations identified by the C. elegans million mutation project, we investigated the effects of 16 single amino acid substitutions on the two functions of the TAT-1 protein. Two substitutions that alter a highly conserved PISL motif in the fourth transmembrane domain and a highly conserved DKTGT phosphorylation motif, respectively, disrupt both functions of TAT-1, leading to a vesicular gut defect and ectopic PS exposure on the cell surface, whereas most other substitutions across the TAT-1 protein, often predicted to be deleterious by bioinformatics programs, do not affect the functions of TAT-1. These results provide in vivo evidence for the importance of the PISL and DKTGT motifs in P4-type ATPases and improve our understanding of the structure-function relationship of TAT-1. Our study also provides an example of how the C. elegans million mutation project helps decipher the structure, functions, and mechanisms of action of important genes.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Intestinos/fisiologia , Proteínas de Transferência de Fosfolipídeos/metabolismo , Motivos de Aminoácidos/genética , Animais , Animais Geneticamente Modificados , Proteínas de Caenorhabditis elegans/genética , Biologia Computacional , Endocitose , Mutação/genética , Fenótipo , Proteínas de Transferência de Fosfolipídeos/genética , Conformação Proteica , Transporte Proteico , Relação Estrutura-Atividade
2.
Nat Struct Mol Biol ; 23(11): 958-964, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27723735

RESUMO

Caspases are cysteine proteases with critical roles in apoptosis. The Caenorhabditis elegans caspase CED-3 is activated by autocatalytic cleavage, a process enhanced by CED-4. Here we report that the CED-3 zymogen localizes to the perinuclear region in C. elegans germ cells and that CED-3 autocatalytic cleavage is held in check by C. elegans nuclei and activated by CED-4. The nuclear-pore protein NPP-14 interacts with the CED-3 zymogen prodomain, colocalizes with CED-3 in vivo and inhibits CED-3 autoactivation in vitro. Several missense mutations in the CED-3 prodomain result in stronger association with NPP-14 and decreased CED-3 activation by CED-4 in the presence of nuclei or NPP-14, thus leading to cell-death defects. Those same mutations enhance autocatalytic cleavage of CED-3 in vitro and increase apoptosis in vivo in the absence of npp-14. Our results reveal a critical role of nuclei and nuclear-membrane proteins in regulating the activation and localization of CED-3.


Assuntos
Apoptose , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Caspases/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/análise , Proteínas de Caenorhabditis elegans/genética , Caspases/análise , Caspases/genética , Ativação Enzimática , Células Germinativas/citologia , Células Germinativas/metabolismo , Mutação de Sentido Incorreto , Complexo de Proteínas Formadoras de Poros Nucleares/análise , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Domínios e Motivos de Interação entre Proteínas
3.
Science ; 353(6297): 394-9, 2016 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-27338704

RESUMO

Mitochondria are inherited maternally in most animals, but the mechanisms of selective paternal mitochondrial elimination (PME) are unknown. While examining fertilization in Caenorhabditis elegans, we observed that paternal mitochondria rapidly lose their inner membrane integrity. CPS-6, a mitochondrial endonuclease G, serves as a paternal mitochondrial factor that is critical for PME. We found that CPS-6 relocates from the intermembrane space of paternal mitochondria to the matrix after fertilization to degrade mitochondrial DNA. It acts with maternal autophagy and proteasome machineries to promote PME. Loss of cps-6 delays breakdown of mitochondrial inner membranes, autophagosome enclosure of paternal mitochondria, and PME. Delayed removal of paternal mitochondria causes increased embryonic lethality, demonstrating that PME is important for normal animal development. Thus, CPS-6 functions as a paternal mitochondrial degradation factor during animal development.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , DNA Mitocondrial/metabolismo , Endodesoxirribonucleases/metabolismo , Fertilização , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Animais , Autofagia , Caenorhabditis elegans/enzimologia , Proteínas de Caenorhabditis elegans/genética , Embrião não Mamífero/citologia , Embrião não Mamífero/enzimologia , Endodesoxirribonucleases/genética , Masculino , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Espermatozoides/enzimologia , Espermatozoides/ultraestrutura
4.
Nature ; 517(7533): 219-22, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25567286

RESUMO

Functional regeneration after nervous system injury requires transected axons to reconnect with their original target tissue. Axonal fusion, a spontaneous regenerative mechanism identified in several species, provides an efficient means of achieving target reconnection as a regrowing axon is able to contact and fuse with its own separated axon fragment, thereby re-establishing the original axonal tract. Here we report a molecular characterization of this process in Caenorhabditis elegans, revealing dynamic changes in the subcellular localization of the EFF-1 fusogen after axotomy, and establishing phosphatidylserine (PS) and the PS receptor (PSR-1) as critical components for axonal fusion. PSR-1 functions cell-autonomously in the regrowing neuron and, instead of acting in its canonical signalling pathway, acts in a parallel phagocytic pathway that includes the transthyretin protein TTR-52, as well as CED-7, NRF-5 and CED-6 (refs 9, 10, 11, 12). We show that TTR-52 binds to PS exposed on the injured axon, and can restore fusion several hours after injury. We propose that PS functions as a 'save-me' signal for the distal fragment, allowing conserved apoptotic cell clearance molecules to function in re-establishing axonal integrity during regeneration of the nervous system.


Assuntos
Apoptose/fisiologia , Axônios/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Glicoproteínas de Membrana/metabolismo , Regeneração Nervosa/fisiologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Proteínas Reguladoras de Apoptose , Axônios/patologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/metabolismo , Cones de Crescimento/metabolismo , Mutação , Fagócitos/metabolismo , Fagocitose , Fosfatidilserinas/metabolismo , Fosfoproteínas/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Espectrina/genética , Espectrina/metabolismo
5.
Elife ; 3: e04265, 2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-25432023

RESUMO

Genetic redundancy and pleiotropism have limited the discovery of functions associated with miRNAs and other regulatory mechanisms. To overcome this, we performed an enhancer screen for developmental defects caused by compromising both global miRISC function and individual genes in Caenorhabditis elegans. Among 126 interactors with miRNAs, we surprisingly found the CED-3 caspase that has only been well studied for its role in promoting apoptosis, mostly through protein activation. We provide evidence for a non-apoptotic function of CED-3 caspase that regulates multiple developmental events through proteolytic inactivation. Specifically, LIN-14, LIN-28, and DISL-2 proteins are known miRNA targets, key regulators of developmental timing, and/or stem cell pluripotency factors involved in miRNA processing. We show CED-3 cleaves these proteins in vitro. We also show CED-3 down-regulates LIN-28 in vivo, possibly rendering it more susceptible to proteasomal degradation. This mechanism may critically contribute to the robustness of gene expression dynamics governing proper developmental control.


Assuntos
Apoptose/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Caspases/metabolismo , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/metabolismo , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/citologia , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Caspases/genética , Linhagem da Célula/genética , Elementos Facilitadores Genéticos/genética , Pleiotropia Genética , Genoma , Humanos , Larva/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Fenótipo , Células-Tronco Pluripotentes/metabolismo , Interferência de RNA , Complexo de Inativação Induzido por RNA , Transdução de Sinais/genética , Fatores de Tempo
6.
Methods Mol Biol ; 1133: 101-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24567097

RESUMO

Caenorhabditis elegans genome has four genes (ced-3, csp-1, csp-2, and csp-3) encoding caspase-like proteins. Among these four proteins, CED-3 is the most well-known cell-killing caspase. Elucidation of the role of CED-3 as a central component of the apoptotic pathway in C. elegans has contributed to the understanding of the more complex apoptosis network in mammals and in other metazoa. In the highly conserved pathway of programmed cell death in C. elegans, CED-3 functions at the terminal step of this cell-killing pathway. Identification of CED-3 caspase substrates is essential for bridging the gaps between CED-3 activation and various downstream cell death execution events. If a protein is cleaved by CED-3 in vitro, this protein could be a potential CED-3 substrate in vivo. Here, we describe the method for purification of active CED-3 caspase. We will also describe in vitro assays for determining CED-3 proteolytic activity, CED-3 substrates, and CED-3 cleavage sites in the substrates.


Assuntos
Caspase 3/genética , Caspase 3/isolamento & purificação , Biologia Molecular/métodos , Sequência de Aminoácidos , Animais , Apoptose/genética , Caenorhabditis elegans/enzimologia , Caspase 3/biossíntese
7.
Nat Commun ; 4: 2726, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24225442

RESUMO

During apoptosis, phosphatidylserine (PS), normally restricted to the inner leaflet of the plasma membrane, is exposed on the surface of apoptotic cells and serves as an 'eat-me' signal to trigger phagocytosis. It is poorly understood how PS exposure is activated in apoptotic cells. Here we report that CED-8, a Caenorhabditis elegans protein implicated in controlling the kinetics of apoptosis and a homologue of the XK family proteins, is a substrate of the CED-3 caspase. Cleavage of CED-8 by CED-3 activates its proapoptotic function and generates a carboxyl-terminal cleavage product, acCED-8, that promotes PS externalization in apoptotic cells and can induce ectopic PS exposure in living cells. Consistent with its role in promoting PS externalization in apoptotic cells, ced-8 is important for cell corpse engulfment in C. elegans. Our finding identifies a crucial link between caspase activation and PS externalization, which triggers phagocytosis of apoptotic cells.


Assuntos
Apoptose , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Caspases/metabolismo , Proteínas de Membrana/metabolismo , Fosfatidilserinas/metabolismo , Alelos , Animais , Animais Geneticamente Modificados , Membrana Celular/metabolismo , Ativação Enzimática , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Choque Térmico/metabolismo , Mutação , Fagocitose
8.
Proc Natl Acad Sci U S A ; 109(45): 18465-70, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23091037

RESUMO

HBx is a multifunctional hepatitis B virus (HBV) protein that is crucial for HBV infection and pathogenesis and a contributing cause of hepatocyte carcinogenesis. However, the host targets and mechanisms of action of HBx are poorly characterized. We show here that expression of HBx in Caenorhabditis elegans induces both necrotic and apoptotic cell death, mimicking an early event of liver infection by HBV. Genetic and biochemical analyses indicate that HBx interacts directly with the B-cell lymphoma 2 (Bcl-2) homolog CED-9 (cell death abnormal) through a Bcl-2 homology 3 (BH3)-like motif to trigger both cytosolic Ca(2+) increase and cell death. Importantly, Bcl-2 can substitute for CED-9 in mediating HBx-induced cell killing in C. elegans, suggesting that CED-9 and Bcl-2 are conserved cellular targets of HBx. A genetic suppressor screen of HBx-induced cell death has produced many mutations, including mutations in key regulators from both apoptosis and necrosis pathways, indicating that this screen can identify new apoptosis and necrosis genes. Our results suggest that C. elegans could serve as an animal model for identifying crucial host factors and signaling pathways of HBx and aid in development of strategies to treat HBV-induced liver disorders.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Cálcio/metabolismo , Espaço Intracelular/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transativadores/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Proteínas de Caenorhabditis elegans/química , Citosol/metabolismo , Genes Supressores , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Mutação/genética , Necrose , Permeabilidade , Ligação Proteica , Proteínas Proto-Oncogênicas c-bcl-2/química , Transdução de Sinais , Transativadores/química , Transativadores/genética , Proteínas Virais Reguladoras e Acessórias
9.
Prog Mol Biol Transl Sci ; 93: 373-94, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20807653

RESUMO

Glycosaminoglycans (GAGs) are complex carbohydrates that are expressed ubiquitously and abundantly on the cell surface and in the extracellular matrix (ECM). The extraordinary structural diversity of GAGs enables them to interact with a wide variety of biological molecules. Through these interactions, GAGs modulate various biological processes, such as cell adhesion, proliferation and migration, ECM assembly, tissue repair, coagulation, and immune responses, among many others. Studies during the last several decades have indicated that GAGs also interact with microbial pathogens. GAG-pathogen interactions affect most, if not all, the key steps of microbial pathogenesis, including host cell attachment and invasion, cell-cell transmission, systemic dissemination and infection of secondary organs, and evasion of host defense mechanisms. These observations indicate that GAG-pathogen interactions serve diverse functions that affect the pathogenesis of infectious diseases.


Assuntos
Doenças Transmissíveis/metabolismo , Doenças Transmissíveis/patologia , Glicosaminoglicanos/metabolismo , Animais , Humanos
10.
Bioorg Med Chem Lett ; 19(13): 3632-6, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19464175

RESUMO

Human rhinovirus 3C protease (HRV 3C(pro)) is known to be a promising target for development of therapeutic agents against the common cold because of the importance of the protease in viral replication as well as its expression in a large number of serotypes. To explore non-peptidic inhibitors of HRV 3C(pro), a series of novel heteroaromatic esters was synthesized and evaluated for inhibitory activity against HRV 3C(pro), to determine the structure-activity relationships. The most potent inhibitor, 7, with a 5-bromopyridinyl group, had an IC(50) value of 80nM. In addition, the binding mode of a novel analog, 19, with the 4-hydroxyquinolinone moiety, was explored by molecular docking, suggesting a new interaction in the S1 pocket.


Assuntos
Antivirais/química , Inibidores de Cisteína Proteinase/química , Furanos/química , Piridinas/química , Rhinovirus/enzimologia , Proteínas Virais/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Proteases Virais 3C , Antivirais/síntese química , Antivirais/farmacologia , Simulação por Computador , Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/síntese química , Inibidores de Cisteína Proteinase/farmacologia , Furanos/síntese química , Furanos/farmacologia , Humanos , Piridinas/síntese química , Piridinas/farmacologia , Relação Estrutura-Atividade , Proteínas Virais/metabolismo
11.
Biochem Biophys Res Commun ; 371(1): 122-6, 2008 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-18413229

RESUMO

By using an improved genetic screening system, variants of the HAV 3CP protease which exhibit altered P2 specificity were obtained. We randomly mutated the His145, Lys146, Lys147, and Leu155 residues that constitute the S2 pocket of 3CP and then isolated variants that preferred substrates with Gln over the original Thr at the P2 position using a yeast-based screening method. One of the isolated variants cleaved the Gln-containing peptide substrate more efficiently in vitro, proving the efficiency of our method in isolating engineered proteases with desired substrate selectivity.


Assuntos
Cisteína Endopeptidases/química , Cisteína Endopeptidases/isolamento & purificação , Evolução Molecular Direcionada/métodos , Engenharia de Proteínas/métodos , Proteínas Virais/química , Proteínas Virais/isolamento & purificação , Proteases Virais 3C , Substituição de Aminoácidos , Sítios de Ligação , Cisteína Endopeptidases/genética , Conformação Proteica , Especificidade por Substrato/genética , Proteínas Virais/genética , Leveduras/genética
12.
Biochem Biophys Res Commun ; 358(1): 7-11, 2007 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-17485072

RESUMO

Coxsackievirus B3 (CVB3) 3C protease (3CP) plays essential roles in the viral replication cycle, and therefore, provides an attractive therapeutic target for treatment of human diseases caused by CVB3 infection. CVB3 3CP and human rhinovirus (HRV) 3CP have a high degree of amino acid sequence similarity. Comparative modeling of these two 3CPs revealed one prominent distinction; an Asn residue delineating the S2' pocket in HRV 3CP is replaced by a Tyr residue in CVB3 3CP. AG7088, a potent inhibitor of HRV 3CP, was modified by substitution of the ethyl group at the P2' position with various hydrophobic aromatic rings that are predicted to interact preferentially with the Tyr residue in the S2' pocket of CVB3 3CP. The resulting derivatives showed dramatically increased inhibitory activities against CVB3 3CP. In addition, one of the derivatives effectively inhibited the CVB3 proliferation in vitro.


Assuntos
Antivirais/síntese química , Enterovirus/efeitos dos fármacos , Isoxazóis/síntese química , Modelos Moleculares , Pirrolidinonas/síntese química , Proteínas Virais/antagonistas & inibidores , Proteases Virais 3C , Substituição de Aminoácidos , Aminoácidos/metabolismo , Antivirais/química , Antivirais/farmacologia , Sítios de Ligação , Sobrevivência Celular/efeitos dos fármacos , Cisteína Endopeptidases , Enterovirus/enzimologia , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Isoxazóis/química , Isoxazóis/farmacologia , Fenilalanina/análogos & derivados , Pirrolidinonas/química , Pirrolidinonas/farmacologia , Rhinovirus/enzimologia , Valina/análogos & derivados , Replicação Viral/efeitos dos fármacos
13.
Nature ; 437(7060): 831-7, 2005 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-16208361

RESUMO

Interplay among four genes--egl-1, ced-9, ced-4 and ced-3--controls the onset of programmed cell death in the nematode Caenorhabditis elegans. Activation of the cell-killing protease CED-3 requires CED-4. However, CED-4 is constitutively inhibited by CED-9 until its release by EGL-1. Here we report the crystal structure of the CED-4-CED-9 complex at 2.6 A resolution, and a complete reconstitution of the CED-3 activation pathway using homogeneous proteins of CED-4, CED-9 and EGL-1. One molecule of CED-9 binds to an asymmetric dimer of CED-4, but specifically recognizes only one of the two CED-4 molecules. This specific interaction prevents CED-4 from activating CED-3. EGL-1 binding induces pronounced conformational changes in CED-9 that result in the dissociation of the CED-4 dimer from CED-9. The released CED-4 dimer further dimerizes to form a tetramer, which facilitates the autoactivation of CED-3. Together, our studies provide important insights into the regulation of cell death activation in C. elegans.


Assuntos
Apoptose , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/química , Caenorhabditis elegans/citologia , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Proteínas Reguladoras de Apoptose , Sítios de Ligação , Caspases/metabolismo , Ativação Enzimática , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , Proteínas Proto-Oncogênicas c-bcl-2 , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Especificidade por Substrato
14.
Mol Biotechnol ; 27(1): 1-6, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15122042

RESUMO

Identifying cellular substrates repertoire of individual proteases will facilitate our understanding of their physiological and pathological roles. In this article, we employed a yeast-based screening method to isolate CED-3 substrates. This method uses a transcription factor anchored to the plasma membrane by fusion to a library of cellular protein sequences. When a fusion protein is cleaved by CED-3, the transcription factor is released from the plasma membrane and enters the nucleus where it turns on the expression of reporter genes. We identified seven candidate clones by screening a genomic library using this method. Of these seven clones, two were cleaved by purified CED-3 in vitro. Therefore, the method described here may be generally used for genomewide screening to isolate potential substrates of specific proteases.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caspases/metabolismo , Cisteína Endopeptidases/metabolismo , Biologia Molecular/métodos , Leveduras/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Caenorhabditis elegans/análise , Proteínas de Caenorhabditis elegans/isolamento & purificação , Caspases/análise , Caspases/isolamento & purificação , Cisteína Endopeptidases/análise , Cisteína Endopeptidases/isolamento & purificação , Biblioteca Gênica , Receptores de Fator de Acasalamento , Receptores de Peptídeos/genética , Receptores de Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Especificidade por Substrato , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Leveduras/metabolismo
15.
Biochem Biophys Res Commun ; 305(4): 862-8, 2003 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-12767910

RESUMO

The Arabidopsis wall-associated receptor kinase, WAK1, is a member of WAK family that links the plasma membrane to the extracellular matrix. A glycine-rich secreted protein, AtGRP-3, was previously shown to regulate WAK1 functions through binding to the extracellular domain of WAK1. In this study, we sought to determine the downstream molecules of the AtGRP-3/WAK1 signaling pathway, by using two-dimensional gel electrophoresis combined with Edman sequencing and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS). We report here that a chloroplast protein, oxygen-evolving enhancer protein 2 (OEE2), specifically interacts with the cytoplasmic kinase domain of WAK1 and becomes phosphorylated in an AtGRP-3-dependent manner. The phosphorylation of OEE2 is also induced in Arabidopsis by treatment with avirulent Pseudomonas syringae. Taken together, these results suggest that OEE2 activity is regulated by AtGRP-3/WAK1.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Proteínas de Membrana/metabolismo , Proteínas Quinases/metabolismo , Sequência de Aminoácidos , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/química , Dados de Sequência Molecular , Fosforilação , Proteoma/análise , Protoplastos/enzimologia , Pseudomonas/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...