Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 8(27): 17651-8, 2016 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-27322927

RESUMO

The ability to rationally design and manipulate the interfacial structure in lithium ion batteries (LIBs) is of utmost technological importance for achieving desired performance requirements as it provides synergistic effects to the electrochemical properties and cycling stability of electrode materials. However, despite considerable efforts and progress made in recent years through the interface engineering based on active electrode materials, relatively little attention has been devoted to address the physical aspects of the interface and interfacial layer between the anode materials layer and the current collector. Here, we propose and successfully grow unique graphene directly on a Cu current collector as an ideal interfacial layer using the modified chemical vapor deposition (CVD). The anode with an engineered graphene interlayer exhibits remarkably improved electrochemical performances, such as large reversible specific capacity (921.4 mAh g(-1) at current density of 200 mA g(-1)), excellent Coulombic efficiency (close to approximately 96%), and superior cycling capacity retention and rate properties compared to the bare Cu. These excellent electrochemical features are discussed in terms of multiple beneficial effects of graphene on interfacial stability and adhesion between the anode and the collector, oxidation or corrosion resistance of the graphene grown Cu current collector, and electrical contact conductance during the charge/discharge process.

2.
Phys Chem Chem Phys ; 18(22): 14859-66, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27188230

RESUMO

Novel supports for the dispersion of Pt electrocatalysts in fuel cells are constantly being developed in order to improve the electrochemical performance and reduce the cost. The electrocatalytic activity and stability in fuel cells largely depend on the surface morphology and structure of the support. In this study, Ru and RuO2 nanofibers prepared by electrospinning and post-calcination have been considered as Pt-catalyst supports. The composite material loaded with 20 wt% Pt catalyst exhibited a high anodic current density of 641.7 mA mgPt(-1), a high IF/IB ratio of 1.9, and excellent electrocatalytic stability compared to commercial Pt/C. The improved anodic current density of the composite is attributed to the high dispersion of the Pt catalyst over the large surface area of the nanosized support grains, while its low onset potential, high IF/IB ratio, and excellent electrocatalytic stability are ascribed to a bifunctional effect resulting from the existence of Ru atoms on the support surface. Finally, the efficient electron transfer and a rapid diffusion rate of the electrolyte are due to the unique network structure of the supports. Thus, the Ru and RuO2 nanofiber composites act as promising Pt-catalyst supports for the methanol oxidation reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...