Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Res ; 20(2): 217-230, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34610961

RESUMO

Aberrant epigenetic transcriptional regulation is linked to metastasis, a primary cause of cancer-related death. Dissecting the epigenetic mechanisms controlling metastatic progression may uncover important insights to tumor biology and potential therapeutic targets. Here, we investigated the role of the SIN3A histone deacetylase 1 and 2 (SIN3A-HDAC1/2) complex in cancer metastasis. Using a mouse model of melanoma metastasis, we found that the SIN3A-HDAC1/2 transcription repressor complex silences BMP6 expression, causing increased metastatic dissemination and tumor growth via suppression of BMP6-activated SMAD5 signaling. We further discovered that FAM83G/PAWS1, a downstream effector of BMP6-SMAD5 signaling, contributes critically to metastatic progression by promoting actin-dependent cytoskeletal dynamics and cell migration. Pharmacologic inhibition of the SIN3A-HDAC1/2 complex reduced the numbers of melanoma cells in the circulation and inhibited metastatic tumor growth by inducing disseminated cell dormancy, highlighting the SIN3A-HDAC1/2 repressor complex as a potential therapeutic target for blocking cancer metastasis. IMPLICATIONS: This study identifies the novel molecular links in the metastatic progression to target cytoskeletal dynamics in melanoma and identifies the SIN3A-HDAC1/2 complex and FAM83G/PAWS1 as potential targets for melanoma adjuvant therapy.


Assuntos
Proteína Morfogenética Óssea 6/metabolismo , Epigênese Genética/genética , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/metabolismo , Proteínas/metabolismo , Animais , Humanos , Melanoma , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Metástase Neoplásica
2.
Prog Brain Res ; 251: 1-28, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32057305

RESUMO

The presence of an extra copy of human chromosome 21 (Hsa21) leads to a constellation of phenotypic manifestations in Down syndrome (DS), including prominent effects on the brain and immune system. Intensive efforts to unravel the molecular mechanisms underlying these phenotypes may help developing effective therapies, both in DS and in the general population. Here we review recent progress in genetic and epigenetic analysis of trisomy 21 (Ts21). New mouse models of DS based on syntenic conservation of segments of the mouse and human chromosomes are starting to clarify the contributions of chromosomal subregions and orthologous genes to specific phenotypes in DS. The expression of genes on Hsa21 is regulated by epigenetic mechanisms, and with recent findings of highly recurrent gene-specific changes in DNA methylation patterns in brain and immune system cells with Ts21, the epigenomics of DS has become an active research area. Here we highlight the value of combining human studies with mouse models for defining DS critical genes and understanding the trans-acting effects of a simple chromosomal aneuploidy on genome-wide epigenetic patterning. These genetic and epigenetic studies are starting to uncover fundamental biological mechanisms, leading to insights that may soon become therapeutically relevant.


Assuntos
Senilidade Prematura , Córtex Cerebral , Síndrome de Down/genética , Epigênese Genética/genética , Senilidade Prematura/imunologia , Senilidade Prematura/metabolismo , Senilidade Prematura/fisiopatologia , Animais , Córtex Cerebral/imunologia , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiopatologia , Modelos Animais de Doenças , Síndrome de Down/imunologia , Síndrome de Down/metabolismo , Síndrome de Down/fisiopatologia , Humanos , Camundongos
3.
Am J Cancer Res ; 9(10): 2194-2208, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31720082

RESUMO

Previous studies showed that intratumoral 27-Hydroxycholesterol (27-HC), a metabolite of cholesterol, promotes growth, invasion and migration of breast cancer cells and that tumor-associated macrophages (TAMs) in breast cancers are closely related to tumor growth and metastatic progression. However, the relationship between 27-HC and TAMs in breast cancer remains unclear. In the present study, we observed that CYP27A1, the 27-HC synthesizing enzyme, was expressed in a much higher level in THP1 monocytes and THP1-derived macrophages than in breast cancer cells, and the promoter of CYP7B1, the degrading enzyme for 27-HC, was highly methylated in breast tumor cells. In addition, THP-1 monocytes and murine bone marrow cells were differentiated toward M2 type macrophages after being co-cultured with breast cancer cells or being exposed to exosomes derived from breast cancer cells. M2 type macrophages produced higher amounts of 27-HC than M0 and M1 type macrophages. 27-HC not only stimulated ER+ cancer cell proliferation as reported, but also promoted the recruitment of CCR2- and CCR5-expressing monocytes by inducing macrophages to express multiple chemokines including CCL2, CCL3 and CCL4. Taken together, our data demonstrate that the hypermethylation of CYP7B1 and recruitment of monocytes likely contribute to the accumulation of 27-Hydroxycholesterol in breast cancer and that the interaction of 27-HC with macrophages further promote the development of breast cancer.

4.
Immunity ; 48(1): 91-106.e6, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29343444

RESUMO

CD103+ dendritic cells are critical for cross-presentation of tumor antigens. Here we have shown that during immunotherapy, large numbers of cells expressing CD103 arose in murine tumors via direct differentiation of Ly6c+ monocytic precursors. These Ly6c+CD103+ cells could derive from bone-marrow monocytic progenitors (cMoPs) or from peripheral cells present within the myeloid-derived suppressor cell (MDSC) population. Differentiation was controlled by inflammation-induced activation of the transcription factor p53, which drove upregulation of Batf3 and acquisition of the Ly6c+CD103+ phenotype. Mice with a targeted deletion of p53 in myeloid cells selectively lost the Ly6c+CD103+ population and became unable to respond to multiple forms of immunotherapy and immunogenic chemotherapy. Conversely, increasing p53 expression using a p53-agonist drug caused a sustained increase in Ly6c+CD103+ cells in tumors during immunotherapy, which markedly enhanced the efficacy and duration of response. Thus, p53-driven differentiation of Ly6c+CD103+ monocytic cells represents a potent and previously unrecognized target for immunotherapy.


Assuntos
Células Apresentadoras de Antígenos/fisiologia , Monócitos/fisiologia , Células Mieloides/metabolismo , Neoplasias/imunologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Células Apresentadoras de Antígenos/imunologia , Antígenos CD/metabolismo , Antígenos Ly/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Citometria de Fluxo , Humanos , Imunoterapia/métodos , Cadeias alfa de Integrinas/metabolismo , Camundongos , Monócitos/imunologia , Células Mieloides/fisiologia
5.
Cancer Immunol Res ; 5(4): 330-344, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28264810

RESUMO

Triple-negative breast cancer (TNBC) cells are modulated in reaction to tumor-infiltrating lymphocytes. However, their specific responses to this immune pressure are unknown. In order to address this question, we first used mRNA sequencing to compare the immunophenotype of the TNBC cell line MDA-MB-231 and the luminal breast cancer cell line MCF7 after both were cocultured with activated human T cells. Despite similarities in the cytokine-induced immune signatures of the two cell lines, MDA-MD-231 cells were able to transcribe more IDO1 than MCF7 cells. The two cell lines had similar upstream JAK/STAT1 signaling and IDO1 mRNA stability. However, using a series of breast cancer cell lines, IFNγ stimulated IDO1 protein expression and enzymatic activity only in ER-, not ER+, cell lines. Treatment with 5-aza-deoxycytidine reversed the suppression of IDO1 expression in MCF7 cells, suggesting that DNA methylation was potentially involved in IDO1 induction. By analyzing several breast cancer datasets, we discovered subtype-specific mRNA and promoter methylation differences in IDO1, with TNBC/basal subtypes exhibiting lower methylation/higher expression and ER+/luminal subtypes exhibiting higher methylation/lower expression. We confirmed this trend of IDO1 methylation by bisulfite pyrosequencing breast cancer cell lines and an independent cohort of primary breast tumors. Taken together, these findings suggest that IDO1 promoter methylation regulates anti-immune responses in breast cancer subtypes and could be used as a predictive biomarker for IDO1 inhibitor-based immunotherapy. Cancer Immunol Res; 5(4); 330-44. ©2017 AACR.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Metilação de DNA , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Regiões Promotoras Genéticas , Linfócitos T/imunologia , Linfócitos T/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Linhagem Celular Tumoral , Citocinas/metabolismo , Ativação Enzimática , Feminino , Regulação Neoplásica da Expressão Gênica , Genes Reporter , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Fator Regulador 1 de Interferon/metabolismo , Janus Quinases/metabolismo , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Estabilidade Proteica , Estabilidade de RNA , RNA Mensageiro/genética , Fator de Transcrição STAT1/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/mortalidade
6.
Bioinformatics ; 33(8): 1139-1146, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28035030

RESUMO

Motivation: Chromatin accessibility plays a key role in epigenetic regulation of gene activation and silencing. Open chromatin regions allow regulatory elements such as transcription factors and polymerases to bind for gene expression while closed chromatin regions prevent the activity of transcriptional machinery. Recently, Methyltransferase Accessibility Protocol for individual templates-Bisulfite Genome Sequencing (MAPit-BGS) and nucleosome occupancy and methylome sequencing (NOMe-seq) have been developed for simultaneously profiling chromatin accessibility and DNA methylation on single molecules. Therefore, there is a great demand in developing computational methods to identify chromatin accessibility from MAPit-BGS and NOMe-seq. Results: In this article, we present CAME (Chromatin Accessibility and Methylation), a seed-extension based approach that identifies chromatin accessibility from NOMe-seq. The efficiency and effectiveness of CAME were demonstrated through comparisons with other existing techniques on both simulated and real data, and the results show that our method not only can precisely identify chromatin accessibility but also outperforms other methods. Availability and Implementation: CAME is implemented in java and the program is freely available online at http://sourceforge.net/projects/came/. Contacts: jechoi@gru.edu or khryu@dblab.chungbuk.ac.kr. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Metilação de DNA/genética , Nucleossomos/metabolismo , Análise de Sequência de DNA/métodos , Software , Algoritmos , Sequência de Bases , Neoplasias do Colo/genética , Simulação por Computador , Ilhas de CpG/genética , Bases de Dados Genéticas , Epigênese Genética , Células HCT116 , Humanos , Conformação de Ácido Nucleico , Curva ROC , Padrões de Referência
7.
Oncotarget ; 7(26): 40558-40570, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27302925

RESUMO

Immunosuppression is a prevalent clinical feature in chronic lymphocytic leukemia (CLL) patients, with many patients demonstrating increased susceptibility to infections as well as increased failure of an antitumor immune response. However, much is currently not understood regarding the precise mechanisms that attribute to this immunosuppressive phenotype in CLL. To provide further clarity to this particular phenomenon, we analyzed the T-cell profile of CLL patient samples within a large cohort and observed that patients with an inverted CD4/CD8 ratio had a shorter time to first treatment as well as overall survival. These observations coincided with higher expression of the immune checkpoint receptor PD-1 in CLL patient CD8+ T cells when compared to age-matched healthy donors. Interestingly, we discovered that increased PD-1 expression in CD8+ T cells corresponds with decreased DNA methylation levels in a distal upstream locus of the PD-1 gene PDCD1. Further analysis using luciferase reporter assays suggests that the identified PDCD1 distal upstream region acts as an enhancer for PDCD1 transcription and this region becomes demethylated during activation of naïve CD8+ T cells by anti-CD3/anti-CD28 antibodies and IL2. Finally, we conducted a genome-wide DNA methylation analysis comparing CD8+ T cells from CLL patients against healthy donors and identified additional differentially methylated genes with known immune regulatory functions including CCR6 and KLRG1. Taken together, our findings reveal the occurrence of epigenetic reprogramming taking place within CLL patient CD8+ T cells and highlight the potential mechanism of how immunosuppression is accomplished in CLL.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Epigênese Genética , Leucemia Linfocítica Crônica de Células B/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Metilação de DNA , Feminino , Regulação Leucêmica da Expressão Gênica , Humanos , Interleucina-2/metabolismo , Células Jurkat , Masculino , Pessoa de Meia-Idade , Fenótipo , Resultado do Tratamento , Adulto Jovem
8.
J Genet Genomics ; 42(7): 355-71, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-26233891

RESUMO

Glioblastoma (GBM) is the most common and most aggressive primary brain tumor in adults. The existence of a small population of stem-like tumor cells that efficiently propagate tumors and resist cytotoxic therapy is one proposed mechanism leading to the resilient behavior of tumor cells and poor prognosis. In this study, we performed an in-depth analysis of the DNA methylation landscape in GBM-derived cancer stem cells (GSCs). Parallel comparisons of primary tumors and GSC lines derived from these tumors with normal controls (a neural stem cell (NSC) line and normal brain tissue) identified groups of hyper- and hypomethylated genes that display a trend of either increasing or decreasing methylation levels in the order of controls, primary GBMs, and their counterpart GSC lines, respectively. Interestingly, concurrent promoter hypermethylation and gene body hypomethylation were observed in a subset of genes including MGMT, AJAP1 and PTPRN2. These unique DNA methylation signatures were also found in primary GBM-derived xenograft tumors indicating that they are not tissue culture-related epigenetic changes. Integration of GSC-specific epigenetic signatures with gene expression analysis further identified candidate tumor suppressor genes that are frequently down-regulated in GBMs such as SPINT2, NEFM and PENK. Forced re-expression of SPINT2 reduced glioma cell proliferative capacity, anchorage independent growth, cell motility, and tumor sphere formation in vitro. The results from this study demonstrate that GSCs possess unique epigenetic signatures that may play important roles in the pathogenesis of GBM.


Assuntos
Glioblastoma/genética , Células-Tronco Neoplásicas/metabolismo , Moléculas de Adesão Celular/genética , Linhagem Celular Tumoral , Metilação de DNA/genética , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Epigênese Genética/genética , Humanos , Glicoproteínas de Membrana/genética , Proteínas de Neurofilamentos/genética , Regiões Promotoras Genéticas/genética , Proteínas Tirosina Fosfatases Classe 8 Semelhantes a Receptores/genética , Proteínas Supressoras de Tumor/genética
9.
Korean J Anesthesiol ; 68(4): 402-6, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26257855

RESUMO

Central venous catheters provide long-term available vascular access. They are useful for central venous pressure monitoring, rapid fluid management, massive transfusion and direct cardiovascular medication, especially in operation. Central venous catheterization is usually performed by the landmark bedside technique without imaging guidance. The complications of central venous catheterization are frequent, which include malposition, pneumothorax, hemothorax, chylothorax, arterial puncture, hematoma, air embolism and infection. Malposition of a central venous catheter is not rare and may cause several complications such as malfunction of the catheter, default measurement of central venous pressure, catheter erosion, thrombophlebitis and cardiac tamponade. In this case, we report a malposition of central venous catheter with 9-Fr introducer sheath which is located in the right subclavian vein via ipsilateral internal jugular vein and the correction of this misplacement assisted by mobile type diagnostic X-ray apparatus (C-arm fluoroscope).

10.
Methods Mol Biol ; 1238: 627-51, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25421684

RESUMO

DNA methylation is the most studied epigenetic event in cancer, with focus being placed on studying the entire DNA methylation landscape in specific cancers. Due to the recent advances of next-generation sequencing technology, several effective methods have been developed for high-throughput analysis of DNA methylation, enabling DNA methylation markers to be innovative diagnostic and therapeutic strategies in cancer. In this review, we discuss various current and emerging technologies in DNA methylation analysis that integrate next-generation sequencing with the basic principles of methylation detections including methylation sensitive restriction enzyme digestion, affinity purification with antibody or binding proteins, and bisulfite treatment. Variations to these described methods have also allowed for detection of 5-hydroxymethylcytosine marks on a genome-wide scale. We also describe several of the bioinformatic tools used to properly analyze methylome-sequencing data. Finally, recently developed artificial transcription-factor (ATF) targeting tools may provide flexible manipulation of DNA methylation events in specific gene regions, revealing the functional consequences of particular DNA methylation events.


Assuntos
Metilação de DNA , Epigenômica/métodos , Neoplasias/genética , Análise de Sequência de DNA/métodos , Animais , Humanos , Mapeamento por Restrição , Sulfitos/farmacologia
11.
Immunity ; 38(5): 998-1012, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23684987

RESUMO

At sites of inflammation, certain regulatory T cells (Treg cells) can undergo rapid reprogramming into helper-like cells without loss of the transcription factor Foxp3. We show that reprogramming is controlled by downregulation of the transcription factor Eos (Ikzf4), an obligate corepressor for Foxp3. Reprogramming was restricted to a specific subset of "Eos-labile" Treg cells that was present in the thymus and identifiable by characteristic surface markers and DNA methylation. Mice made deficient in this subset became impaired in their ability to provide help for presentation of new antigens to naive T cells. Downregulation of Eos required the proinflammatory cytokine interleukin-6 (IL-6), and mice lacking IL-6 had impaired development and function of the Eos-labile subset. Conversely, the immunoregulatory enzyme IDO blocked loss of Eos and prevented the Eos-labile Treg cells from reprogramming. Thus, the Foxp3(+) lineage contains a committed subset of Treg cells capable of rapid conversion into biologically important helper cells.


Assuntos
Proteínas de Transporte/metabolismo , Fator de Transcrição Ikaros/metabolismo , Interleucina-6/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Diferenciação Celular/imunologia , Proteínas de Ligação a DNA , Regulação para Baixo , Fatores de Transcrição Forkhead/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Interleucina-6/genética , Ativação Linfocitária/imunologia , Camundongos , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia , Timo
12.
Cancer Lett ; 340(2): 171-8, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23200671

RESUMO

Bisulfite conversion of genomic DNA combined with next-generation sequencing (NGS) has become a very effective approach for mapping the whole-genome and sub-genome wide DNA methylation landscapes. However, whole methylome shotgun bisulfite sequencing is still expensive and not suitable for analyzing large numbers of human cancer specimens. Recent advances in the development of targeted bisulfite sequencing approaches offer several attractive alternatives. The characteristics and applications of these methods are discussed in this review article. In addition, the bioinformatic tools that can be used for sequence capture probe design as well as downstream sequence analyses are also addressed.


Assuntos
Biomarcadores Tumorais/genética , Metilação de DNA , Genoma Humano , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias/genética , Análise de Sequência de DNA , Sulfitos/química , Animais , Biologia Computacional , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Testes Genéticos , Humanos , Neoplasias/diagnóstico , Neoplasias/terapia , Fenótipo , Reação em Cadeia da Polimerase , Medicina de Precisão , Valor Preditivo dos Testes , Prognóstico
13.
Epigenetics ; 7(6): 567-78, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22534504

RESUMO

We conducted a genome-wide DNA methylation analysis in CD19 (+) B-cells from chronic lymphocytic leukemia (CLL) patients and normal control samples using reduced representation bisulfite sequencing (RRBS). The methylation status of 1.8-2.3 million CpGs in the CLL genome was determined; about 45% of these CpGs were located in more than 23,000 CpG islands (CGIs). While global CpG methylation was similar between CLL and normal B-cells, 1764 gene promoters were identified as being differentially methylated in at least one CLL sample when compared with normal B-cell samples. Nineteen percent of the differentially methylated genes were involved in transcriptional regulation. Aberrant hypermethylation was found in all HOX gene clusters and a significant number of WNT signaling pathway genes. Hypomethylation occurred more frequently in the gene body including introns, exons, and 3'-UTRs in CLL. The NFATc1 P2 promoter and first intron was found to be hypomethylated and correlated with upregulation of both NFATc1 RNA and protein expression levels in CLL suggesting that an epigenetic mechanism is involved in the constitutive activation of NFAT activity in CLL cells. This comprehensive DNA methylation analysis will further our understanding of the epigenetic contribution to cellular dysfunction in CLL.


Assuntos
Metilação de DNA , Epigênese Genética , Leucemia Linfocítica Crônica de Células B/genética , Adulto , Idoso , Linfócitos B/metabolismo , Ilhas de CpG , Feminino , Regulação Neoplásica da Expressão Gênica , Genes Homeobox , Genoma Humano , Humanos , Leucemia Linfocítica Crônica de Células B/metabolismo , Masculino , Pessoa de Meia-Idade , Fatores de Transcrição NFATC/metabolismo , Proteínas Wnt/metabolismo
14.
Nucleic Acids Res ; 39(19): e127, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21785137

RESUMO

We applied a solution hybrid selection approach to the enrichment of CpG islands (CGIs) and promoter sequences from the human genome for targeted high-throughput bisulfite sequencing. A single lane of Illumina sequences allowed accurate and quantitative analysis of ~1 million CpGs in more than 21,408 CGIs and more than 15,946 transcriptional regulatory regions. Of the CpGs analyzed, 77-84% fell on or near capture probe sequences; 69-75% fell within CGIs. More than 85% of capture probes successfully yielded quantitative DNA methylation information of targeted regions. Differentially methylated regions (DMRs) were identified in the 5'-end regulatory regions, as well as the intra- and intergenic regions, particularly in the X-chromosome among the three breast cancer cell lines analyzed. We chose 46 candidate loci (762 CpGs) for confirmation with PCR-based bisulfite sequencing and demonstrated excellent correlation between two data sets. Targeted bisulfite sequencing of three DNA methyltransferase (DNMT) knockout cell lines and the wild-type HCT116 colon cancer cell line revealed a significant decrease in CpG methylation for the DNMT1 knockout and DNMT1, 3B double knockout cell lines, but not in DNMT3B knockout cell line. We demonstrated the targeted bisulfite sequencing approach to be a powerful method to uncover novel aberrant methylation in the cancer epigenome. Since all targets were captured and sequenced as a pool through a series of single-tube reactions, this method can be easily scaled up to deal with a large number of samples.


Assuntos
Ilhas de CpG , Metilação de DNA , Sequenciamento de Nucleotídeos em Larga Escala , Hibridização de Ácido Nucleico/métodos , Análise de Sequência de DNA/métodos , Sulfitos , Linhagem Celular Tumoral , DNA (Citosina-5-)-Metiltransferases/genética , Técnicas de Inativação de Genes , Humanos , Regiões Promotoras Genéticas
15.
Mamm Genome ; 16(8): 631-49, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16180145

RESUMO

A high-resolution (1 marker/700 kb) physically ordered radiation hybrid (RH) and comparative map of 122 loci on equine homologs of human Chromosome 19 (HSA19) shows a variant evolution of these segments in equids/Perissodactyls compared with other mammals. The segments include parts of both the long and the short arm of horse Chromosome 7 (ECA7), the proximal part of ECA21, and the entire short arm of ECA10. The map includes 93 new markers, of which 89 (64 gene-specific and 25 microsatellite) were genotyped on a 5000-rad horse x hamster RH panel, and 4 were mapped exclusively by FISH. The orientation and alignment of the map was strengthened by 21 new FISH localizations, of which 15 represent genes. The approximately sevenfold-improved map resolution attained in this study will prove extremely useful for candidate gene discovery in the targeted equine chromosomal regions. The highlight of the comparative map is the fine definition of homology between the four equine chromosomal segments and corresponding HSA19 regions specified by physical coordinates (bp) in the human genome sequence. Of particular interest are the regions on ECA7 and ECA21 that correspond to the short arm of HSA19-a genomic rearrangement discovered to date only in equids/Perissodactyls as evidenced through comparative Zoo-FISH analysis of the evolution of ancestral HSA19 segments in eight mammalian orders involving about 50 species.


Assuntos
Cromossomos Humanos Par 19/genética , Evolução Molecular , Cavalos/genética , Mamíferos/genética , Mapeamento Físico do Cromossomo , Animais , Cromossomos Artificiais Bacterianos , Marcadores Genéticos , Genoma , Humanos , Hibridização in Situ Fluorescente , Metáfase , Repetições de Microssatélites , Mapeamento de Híbridos Radioativos
16.
Proc Natl Acad Sci U S A ; 101(8): 2386-91, 2004 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-14983019

RESUMO

Development of a dense map of the horse genome is key to efforts aimed at identifying genes controlling health, reproduction, and performance. We herein report a high-resolution gene map of the horse (Equus caballus) X chromosome (ECAX) generated by developing and typing 116 gene-specific and 12 short tandem repeat markers on the 5,000-rad horse x hamster whole-genome radiation hybrid panel and mapping 29 gene loci by fluorescence in situ hybridization. The human X chromosome sequence was used as a template to select genes at 1-Mb intervals to develop equine orthologs. Coupled with our previous data, the new map comprises a total of 175 markers (139 genes and 36 short tandem repeats, of which 53 are fluorescence in situ hybridization mapped) distributed on average at approximately 880-kb intervals along the chromosome. This is the densest and most uniformly distributed chromosomal map presently available in any mammalian species other than humans and rodents. Comparison of the horse and human X chromosome maps shows remarkable conservation of gene order along the entire span of the chromosomes, including the location of the centromere. An overview of the status of the horse map in relation to mouse, livestock, and companion animal species is also provided. The map will be instrumental for analysis of X linked health and fertility traits in horses by facilitating identification of targeted chromosomal regions for isolation of polymorphic markers, building bacterial artificial chromosome contigs, or sequencing.


Assuntos
Cavalos/genética , Cromossomo X/genética , Animais , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos , Feminino , Marcadores Genéticos , Humanos , Hibridização in Situ Fluorescente , Masculino , Cromossomo X/efeitos da radiação , Cromossomo Y/genética
17.
Genomics ; 83(2): 203-15, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14706449

RESUMO

Comparative genomics has served as a backbone for the rapid development of gene maps in domesticated animals. The integration of this approach with radiation hybrid (RH) analysis provides one of the most direct ways to obtain physically ordered comparative maps across evolutionarily diverged species. We herein report the development of a detailed RH and comparative map for horse chromosome 17 (ECA17). With markers distributed at an average interval of every 1.4 Mb, the map is currently the most informative among the equine chromosomes. It comprises 75 markers (56 genes and 19 microsatellites), of which 50 gene specific and 5 microsatellite markers were generated in this study and typed to our 5000-rad horse x hamster whole genome RH panel. The markers are dispersed over six RH linkage groups and span 825 cR(5000). The map is among the most comprehensive whole chromosome comparative maps currently available for domesticated animals. It finely aligns ECA17 to human and mouse homologues (HSA13 and MMU1, 3, 5, 8, and 14, respectively) and homologues in other domesticated animals. Comparisons provide insight into their relative organization and help to identify evolutionarily conserved segments. The new ECA17 map will serve as a template for the development of clusters of BAC contigs in regions containing genes of interest. Sequencing of these regions will help to initiate studies aimed at understanding the molecular mechanisms for various diseases and inherited disorders in horse as well as human.


Assuntos
Mapeamento Cromossômico/métodos , Cromossomos , Cavalos/genética , Animais , Cromossomos Artificiais Bacterianos , Primers do DNA , Marcadores Genéticos , Genômica/métodos , Humanos , Hibridização in Situ Fluorescente , Camundongos , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...