Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Sci Rep ; 14(1): 5262, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438403

RESUMO

The current study investigated the hemispheric dynamics underlying semantic and syntactic priming in lexical decision tasks. Utilizing primed-lateralized paradigms, we observed a distinct pattern of semantic priming contingent on the priming hemisphere. The right hemisphere (RH) exhibited robust semantic priming irrespective of syntactic congruency between prime and target, underscoring its proclivity for semantic processing. Conversely, the left hemisphere (LH) demonstrated slower response times for semantically congruent yet syntactically incongruent word pairs, highlighting its syntactic processing specialization. Additionally, nonword data revealed a hemispheric divergence in syntactic processing, with the LH showing significant intrahemispheric syntactic priming. These findings illuminate the intrinsic hemispheric specializations for semantic and syntactic processing, offering empirical support for serial processing models. The study advances our understanding of the complex interplay between semantic and syntactic factors in hemispheric interactions.

2.
ACS Nano ; 17(19): 19076-19086, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37772990

RESUMO

The crucial role of nanocrystalline morphology in stabilizing the ferroelectric orthorhombic (o)-phase in doped-hafnia films is achieved via chemical solution deposition (CSD) by intentionally retaining carbonaceous impurities to inhibit grain growth. However, in the present study, large-grained (>100 nm) La-doped HfO2 (HLO) films are grown directly on silicon by adopting engineered water-diluted precursors with a minimum carbonaceous load and excellent shelf life. The o-phase stabilization is accomplished through a well-distributed La dopant, which generates uniformly populated oxygen vacancies, eliminating the need for oxygen-scavenging electrodes. These oxygen-deficient HLOs show a maximum remnant polarization of 37.6 µC/cm2 (2Pr) without wake-up and withstand large fields (>6.2 MV/cm). Furthermore, CSD-HLO in series with Al2O3 improves switching of MOSFETs (with an amorphous oxide channel) based on the negative capacitance effect. Thus, uniformly distributed oxygen vacancies serve as a standalone factor in stabilizing the o-phase, enabling efficient wake-up-free ferroelectricity without the need for nanostructuring, capping stresses, or oxygen-reactive electrodes.

3.
ACS Nano ; 16(7): 10314-10326, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35729795

RESUMO

High-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) can be acquired together with energy dispersive X-ray (EDX) spectroscopy to give complementary information on the nanoparticles being imaged. Recent deep learning approaches show potential for accurate 3D tomographic reconstruction for these applications, but a large number of high-quality electron micrographs are usually required for supervised training, which may be difficult to collect due to the damage on the particles from the electron beam. To overcome these limitations and enable tomographic reconstruction even in low-dose sparse-view conditions, here we present an unsupervised deep learning method for HAADF-STEM-EDX tomography. Specifically, to improve the EDX image quality from low-dose condition, a HAADF-constrained unsupervised denoising approach is proposed. Additionally, to enable extreme sparse-view tomographic reconstruction, an unsupervised view enrichment scheme is proposed in the projection domain. Extensive experiments with different types of quantum dots show that the proposed method offers a high-quality reconstruction even with only three projection views recorded under low-dose conditions.


Assuntos
Aprendizado Profundo , Nanopartículas , Microscopia Eletrônica de Transmissão e Varredura/métodos , Tomografia com Microscopia Eletrônica , Tomografia Computadorizada por Raios X/métodos
4.
Small ; 18(18): e2107620, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35373528

RESUMO

By controlling the configuration of polymorphic phases in high-k Hf0.5 Zr0.5 O2 thin films, new functionalities such as persistent ferroelectricity at an extremely small scale can be exploited. To bolster the technological progress and fundamental understanding of phase stabilization (or transition) and switching behavior in the research area, efficient and reliable mapping of the crystal symmetry encompassing the whole scale of thin films is an urgent requisite. Atomic-scale observation with electron microscopy can provide decisive information for discriminating structures with similar symmetries. However, it often demands multiple/multiscale analysis for cross-validation with other techniques, such as X-ray diffraction, due to the limited range of observation. Herein, an efficient and automated methodology for large-scale mapping of the crystal symmetries in polycrystalline Hf0.5 Zr0.5 O2 thin films is developed using scanning probe-based diffraction and a hybrid deep convolutional neural network at a 2 nm2 resolution. The results for the doped hafnia films are fully proven to be compatible with atomic structures revealed by microscopy imaging, not requiring intensive human input for interpretation.


Assuntos
Aprendizado Profundo , Humanos , Difração de Raios X
5.
Adv Mater ; 34(18): e2108777, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35293650

RESUMO

2D multiferroics with combined ferroic orders have gained attention owing to their novel functionality and underlying science. Intrinsic ferroelastic-ferroelectric multiferroicity in single-crystalline van der Waals rhenium dichalcogenides, whose symmetries are broken by the Peierls distortion and layer-stacking order, is demonstrated. Ferroelastic switching of the domain orientation and accompanying anisotropic properties is achieved with 1% uniaxial strain using the polymer encapsulation method. Based on the electron localization function and bond dissociation energy of the Re-Re bonds, the change in bond configuration during the evolution of the domain wall and the preferred switching between the two specific orientation states are explained. Furthermore, the ferroelastic switching of ferroelectric polarization is confirmed using the photovoltaic effect. The study provides insights into the reversible bond-switching process and potential applications based on 2D multiferroicity.

6.
Small Methods ; 5(5): e2001264, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34928087

RESUMO

The bevel structure of organic multilayers produced by finely controlled Ar gas cluster ion beam sputtering preserves both the molecular distribution and chemical states. Nevertheless, there is still an important question of whether this method can be applicable to organic multilayer structures composed of complex or ambiguous interfaces used in real organic optoelectronic devices. Herein, various bevel structures are fabricated from different types of organic semiconductors using a solution-based deposition technique: complicatedly intermixed electron-donor and electron-acceptor bulk heterojunction structure, thin film structure with an internal donor-acceptor concentration gradient, and multi-layered structure with more than three layers. For these organic material combinations listed above, the bevel structure is fabricated with finely tuned Ar gas cluster ion beam sputtering. The location-dependent X-ray photoelectron spectroscopy (XPS) results obtained for each bevel structure exactly correspond to the XPS depth profiles. This result demonstrates that the bevel structure analysis is a powerful method to distinguish subtle differences in chemical component distributions and chemical states of organic semiconductors even with complex or ambiguous interfaces. Ultimately, due to its reliability as verified by this study, the proposed bevel structure analysis is expected to greatly expand other analytical techniques with a limited spatial or depth resolution.

7.
Sci Rep ; 11(1): 19889, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615961

RESUMO

Colloidal quantum-dots (QDs) are highly attractive materials for various optoelectronic applications owing to their easy maneuverability, high functionality, wide applicability, and low cost of mass-production. QDs usually consist of two components: the inorganic nano-crystalline particle and organic ligands that passivate the surface of the inorganic particle. The organic component is also critical for tuning electronic properties of QDs as well as solubilizing QDs in various solvents. However, despite extensive effort to understand the chemistry of ligands, it has been challenging to develop an efficient and reliable method for identifying and quantifying ligands on the QD surface. Herein, we developed a novel method of analyzing ligands in a mild yet accurate fashion. We found that oxidizing agents, as a heterogeneous catalyst in a different phase from QDs, can efficiently disrupt the interaction between the inorganic particle and organic ligands, and the subsequent simple phase fractionation step can isolate the ligand-containing phase from the oxidizer-containing phase and the insoluble precipitates. Our novel analysis procedure ensures to minimize the exposure of ligand molecules to oxidizing agents as well as to prepare homogeneous samples that can be readily analyzed by diverse analytical techniques, such as nuclear magnetic resonance spectroscopy and gas-chromatography mass-spectrometry.

8.
ACS Appl Mater Interfaces ; 13(30): 36499-36506, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34310129

RESUMO

HfO2-based ferroelectrics are highly expected to lead the new paradigm of nanoelectronic devices owing to their unexpected ability to enhance ferroelectricity in the ultimate thickness scaling limit (≤2 nm). However, an understanding of its physical origin remains uncertain because its direct microstructural and chemical characterization in such a thickness regime is extremely challenging. Herein, we solve the mystery for the continuous retention of high ferroelectricity in an ultrathin hafnium zirconium oxide (HZO) film (∼2 nm) by unveiling the evolution of microstructures and crystallographic orientations using a combination of state-of-the-art structural analysis techniques beyond analytical limits and theoretical approaches. We demonstrate that the enhancement of ferroelectricity in ultrathin HZO films originates from textured grains with a preferred orientation along an unusual out-of-plane direction of (112). In principle, (112)-oriented grains can exhibit 62% greater net polarization than the randomly oriented grains observed in thicker samples (>4 nm). Our first-principles calculations prove that the hydroxyl adsorption during the deposition process can significantly reduce the surface energy of (112)-oriented films, thereby stabilizing the high-index facet of (112). This work provides new insights into the ultimate scaling of HfO2-based ferroelectrics, which may facilitate the design of future extremely small-scale logic and memory devices.

9.
Nat Commun ; 12(1): 3814, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34155217

RESUMO

To improve the performance of Li-ion batteries (LIBs), it is essential to understand the behaviour of Li ions during charge-discharge cycling. However, the analytical techniques for observing the Li ions are limited. Here, we present the complementary use of scanning transmission electron microscopy and atom probe tomography at identical locations to demonstrate that the evolution of the local Li composition and the corresponding structural changes at the atomic scale cause the capacity degradation of Li(Ni0.80Co0.15Mn0.05)O2 (NCM), an LIB cathode. Using these two techniques, we show that a Li concentration gradient evolves during cycling, and the depth of the gradient expands proportionally with the number of cycles. We further suggest that the capacity to accommodate Li ions is determined by the degree of structural disordering. Our findings provide direct evidence of the behaviour of Li ions during cycling and thus the origin of the capacity decay in LIBs.

10.
ACS Nano ; 12(12): 12109-12117, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30474967

RESUMO

Synthesizing semiconductor nanoparticles through core/shell structuring is an effective strategy to promote the functional, physical, and kinetic performance of optoelectronic materials. However, elucidating the internal structure and related atomic distribution of core/shell structured quantum dots (QDs) in three dimensions, particularly at heterostructure interfaces, has been an overarching challenge. Herein, by applying complementary analytical techniques of electron microscopy and atom probe tomography, the dimensional, structural, topological, and compositional information on commercially available 11.8 nm-sized CdSSe/ZnS QDs were obtained. Systematic experiments at high resolution reveal the presence of a 1.8 nm-thick Cd xZn1 - xS inner shell with a composition gradient between the CdSe core and the ZnS outermost shell. More strikingly, the inner shell shows compositional variation because of competitive atomic configuration between Cd and ZnS, but it structurally retains a zinc-blende crystal structure with the core. The inner shell may grow through the decreased reactivity of S with Cd, followed by atomic diffusion-related processes. The composition-competitive gradient inner shell alleviates lattice misfit strain at heterostructure interfaces, thereby enhancing the quantum yield and photostabilty to a greater extent than those of other single-shell structures. Thus, this precise measurement approach could offer a potential pathway to develop a wide variety of three-dimensional core/shell-structured materials.

11.
Adv Mater ; 30(20): e1706864, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29573499

RESUMO

Misorientation-angle dependence on layer thickness is an intriguing feature of van der Waals materials, which causes stark optical gain and electrical transport modulation. However, the influence of misorientation angle on phase transformation is not determined yet. Herein, this phenomenon in a MoS2 multilayer via in situ electron-beam irradiation is reported. An AA'-stacked MoS2 bilayer undergoes structural transformation from the 2H semiconducting phase to the 1T' metallic phase, similar to a MoS2 monolayer, which is confirmed via in situ transmission electron microscopy. Moreover, non-AA' stacking, which has no local AA' stacking order in the Moiré pattern, does not reveal such a phase transformation. While a collective sliding motion of chalcogen atoms easily occurs during the transformation in AA' stacking, in non-AA' stacking it is suppressed by the weak van der Waals strength and by the chalcogen atoms interlocked at different orientations, which disfavor their kinetics by the increased entropy of mixing.

12.
Sci Rep ; 7: 41336, 2017 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-28128218

RESUMO

There is an increasing demand in the flexible electronics industry for highly robust flexible/transparent conductors that can withstand high temperatures and corrosive environments. In this work, outstanding thermal and ambient stability is demonstrated for a highly transparent Ag nanowire electrode with a low electrical resistivity, by encapsulating it with an ultra-thin Al2O3 film (around 5.3 nm) via low-temperature (100 °C) atomic layer deposition. The Al2O3-encapsulated Ag nanowire (Al2O3/Ag) electrodes are stable even after annealing at 380 °C for 100 min and maintain their electrical and optical properties. The Al2O3 encapsulation layer also effectively blocks the permeation of H2O molecules and thereby enhances the ambient stability to greater than 1,080 h in an atmosphere with a relative humidity of 85% at 85 °C. Results from the cyclic bending test of up to 500,000 cycles (under an effective strain of 2.5%) confirm that the Al2O3/Ag nanowire electrode has a superior mechanical reliability to that of the conventional indium tin oxide film electrode. Moreover, the Al2O3 encapsulation significantly improves the mechanical durability of the Ag nanowire electrode, as confirmed by performing wiping tests using isopropyl alcohol.

13.
ACS Appl Mater Interfaces ; 9(1): 566-572, 2017 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-27977917

RESUMO

To synthesize a thermally robust Ni1-xPtxSi film suitable for ultrashallow junctions in advanced metal-oxide-semiconductor field-effect transistors, we used a continuous laser beam to carry out millisecond annealing (MSA) on a preformed Ni-rich silicide film at a local surface temperature above 1000 °C while heating the substrate to initiate a phase transition. The melting and quenching process by this unique high-temperature MSA process formed a Ni1-xPtxSi film with homogeneous Pt distribution across the entire film thickness. After additional substantial thermal treatment up to 800 °C, the noble Ni1-xPtxSi film maintained a low-resistive phase without agglomeration and even exhibited interface flattening with the underlying Si substrate.

14.
Sci Rep ; 6: 23940, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27044371

RESUMO

In thin film technology, future semiconductor and display products with high performance, high density, large area, and ultra high definition with three-dimensional functionalities require high performance thin film transistors (TFTs) with high stability. Zinc oxynitride, a composite of zinc oxide and zinc nitride, has been conceded as a strong substitute to conventional semiconductor film such as silicon and indium gallium zinc oxide due to high mobility value. However, zinc oxynitride has been suffered from poor reproducibility due to relatively low binding energy of nitrogen with zinc, resulting in the instability of composition and its device performance. Here we performed post argon plasma process on zinc oxynitride film, forming nano-crystalline structure in stable amorphous matrix which hampers the reaction of oxygen with zinc. Therefore, material properties and device performance of zinc oxynitride are greatly enhanced, exhibiting robust compositional stability even exposure to air, uniform phase, high electron mobility, negligible fast transient charging and low noise characteristics. Furthermore, We expect high mobility and high stability zinc oxynitride customized by plasma process to be applicable to a broad range of semiconductor and display devices.

15.
Nanoscale ; 7(20): 9311-9, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-25946575

RESUMO

The wafer-scale synthesis of two-dimensional molybdenum disulfide (MoS2) films, with high layer-controllability and uniformity, remains a significant challenge in the fields of nano and optoelectronics. Here, we report the highly thickness controllable growth of uniform MoS2 thin films on the wafer-scale via a spin-coating route. Formulation of a dimethylformamide-based MoS2 precursor solution mixed with additional amine- and amino alcohol-based solvents (n-butylamine and 2-aminoethanol) allowed for the formation of a uniform coating of MoS2 thin films over a 2 inch wafer-scale SiO2/Si substrate. In addition, facile control of the average number of stacking layers is demonstrated by simply manipulating the concentration of the precursor solution. Various characterization results reveal that the synthesized MoS2 film has wafer-scale homogeneity with excellent crystalline quality and a stoichiometric chemical composition. To further demonstrate possible device applications, a mostly penta-layered MoS2 thin film was integrated into a top-gated field-effect transistor as the channel layer and we also successfully transferred our films onto transparent/flexible substrates.

17.
Adv Mater ; 26(41): 7102-9, 2014 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-25219518

RESUMO

A technique for invisible image capture using a photosensor array based on transparent conducting oxide semiconductor thin-film transistors and transparent interconnection technologies is presented. A transparent conducting layer is employed for the sensor electrodes as well as interconnection in the array, providing about 80% transmittance at visible-light wavelengths. The phototransistor is a Hf-In-Zn-O/In-Zn-O heterostructure yielding a high quantum-efficiency in the visible range.

18.
Opt Lett ; 39(17): 5062-5, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25166074

RESUMO

We examined the ultrafast dynamics of photocarriers in nanocrystalline ZnOxNy thin films as a function of compositional variation using femtosecond differential transmittance spectroscopy. The relaxation dynamics of photogenerated carriers and electronic structures are strongly dependent on nitrogen concentration. Photocarriers of ZnOxNy films relax on two different time scales. Ultrafast relaxation over several picoseconds is observed for all chemical compositions. However, ZnO and oxygen-rich phases show slow relaxation (longer than several nanoseconds), whereas photocarriers of films with high nitrogen concentrations relax completely on subnanosecond time scales. These relaxation features may provide a persistent photocurrent-free and prompt photoresponsivity for ZnOxNy with high nitrogen concentrations, as opposed to ZnO for display applications.

19.
Opt Express ; 22 Suppl 3: A857-66, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24922392

RESUMO

We discuss the influence of V-pits and their energy barrier, originating from its facets of (101¯1) planes, on the luminescence efficiency of InGaN LEDs. Experimental analysis using cathodoluminescence (CL) exhibits that thin facets of V-pits of InGaN quantum wells (QWs) appear to be effective in improving the emission intensity, preventing the injected carriers from recombining non-radiatively with threading dislocations (TDs). Our theoretical calculation based on the self-consistent approach with adopting k⋅p method reveals that higher V-pit energy barrier heights in InGaN QWs more efficiently suppress the non-radiative recombination at TDs, thus enhancing the internal quantum efficiency (IQE).

20.
Sci Rep ; 4: 4948, 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-24824778

RESUMO

Interest in oxide semiconductors stems from benefits, primarily their ease of process, relatively high mobility (0.3-10 cm(2)/vs), and wide-bandgap. However, for practical future electronic devices, the channel mobility should be further increased over 50 cm(2)/vs and wide-bandgap is not suitable for photo/image sensor applications. The incorporation of nitrogen into ZnO semiconductor can be tailored to increase channel mobility, enhance the optical absorption for whole visible light and form uniform micro-structure, satisfying the desirable attributes essential for high performance transistor and visible light photo-sensors on large area platform. Here, we present electronic, optical and microstructural properties of ZnON, a composite of Zn3N2 and ZnO. Well-optimized ZnON material presents high mobility exceeding 100 cm(2) V(-1) s(-1), the band-gap of 1.3 eV and nanocrystalline structure with multiphase. We found that mobility, microstructure, electronic structure, band-gap and trap properties of ZnON are varied with nitrogen concentration in ZnO. Accordingly, the performance of ZnON-based device can be adjustable to meet the requisite of both switch device and image-sensor potentials. These results demonstrate how device and material attributes of ZnON can be optimized for new device strategies in display technology and we expect the ZnON will be applicable to a wide range of imaging/display devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...