Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38964419

RESUMO

PURPOSE: To investigate the potential of virtual contrast-enhanced MRI (VCE-MRI) for gross-tumor-volume (GTV) delineation of nasopharyngeal carcinoma (NPC) using multi-institutional data. METHODS AND MATERIALS: This study retrospectively retrieved T1-weighted (T1w), T2-weighted (T2w) MRI, gadolinium-based contrast-enhanced MRI (CE-MRI) and planning CT of 348 biopsy-proven NPC patients from three oncology centers. A multimodality-guided synergistic neural network (MMgSN-Net) was trained using 288 patients to leverage complementary features in T1w and T2w MRI for VCE-MRI synthesis, which was independently evaluated using 60 patients. Three board-certified radiation oncologists and two medical physicists participated in clinical evaluations in three aspects: image quality assessment of the synthetic VCE-MRI, VCE-MRI in assisting target volume delineation, and effectiveness of VCE-MRI-based contours in treatment planning. The image quality assessment includes distinguishability between VCE-MRI and CE-MRI, clarity of tumor-to-normal tissue interface and veracity of contrast enhancement in tumor invasion risk areas. Primary tumor delineation and treatment planning were manually performed by radiation oncologists and medical physicists, respectively. RESULTS: The mean accuracy to distinguish VCE-MRI from CE-MRI was 31.67%; no significant difference was observed in the clarity of tumor-to-normal tissue interface between VCE-MRI and CE-MRI; for the veracity of contrast enhancement in tumor invasion risk areas, an accuracy of 85.8% was obtained. The image quality assessment results suggest that the image quality of VCE-MRI is highly similar to real CE-MRI. The mean dosimetric difference of planning target volumes were less than 1Gy. CONCLUSIONS: The VCE-MRI is highly promising to replace the use of gadolinium-based CE-MRI in tumor delineation of NPC patients.

2.
Quant Imaging Med Surg ; 14(6): 4098-4109, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38846293

RESUMO

Background: Different image modalities capture different aspects of a patient. It is desirable to produce images that capture all such features in a single image. This research investigates the potential of multi-modal image fusion method to enhance magnetic resonance imaging (MRI) tumor contrast and its consistency across different patients, which can capture both the anatomical structures and tumor contrast clearly in one image, making MRI-based target delineation more accurate and efficient. Methods: T1-weighted (T1-w) and T2-weighted (T2-w) magnetic resonance (MR) images from 80 nasopharyngeal carcinoma (NPC) patients were used. A novel image fusion method, Pixelwise Gradient Model for Image Fusion (PGMIF), which is based on the pixelwise gradient to capture the shape and a generative adversarial network (GAN) term to capture the image contrast, was introduced. PGMIF is compared with several popular fusion methods. The performance of fusion methods was quantified using two metrics: the tumor contrast-to-noise ratio (CNR), which aims to measure the contrast of the edges, and a Generalized Sobel Operator Analysis, which aims to measure the sharpness of edge. Results: The PGMIF method yielded the highest CNR [median (mdn) =1.208, interquartile range (IQR) =1.175-1.381]. It was a statistically significant enhancement compared to both T1-w (mdn =1.044, IQR =0.957-1.042, P<5.60×10-4) and T2-w MR images (mdn =1.111, IQR =1.023-1.182, P<2.40×10-3), and outperformed other fusion models: Gradient Model with Maximum Comparison among Images (GMMCI) (mdn =0.967, IQR =0.795-0.982, P<5.60×10-4), Deep Learning Model with Weighted Loss (DLMWL) (mdn =0.883, IQR =0.832-0.943, P<5.60×10-4), Pixelwise Weighted Average (PWA) (mdn =0.875, IQR =0.806-0.972, P<5.60×10-4) and Maximum of Images (MoI) (mdn =0.863, IQR =0.823-0.991, P<5.60×10-4). In terms of the Generalized Sobel Operator Analysis, a measure based on Sobel operator to measure contrast enhancement, PGMIF again exhibited the highest Generalized Sobel Operator (mdn =0.594, IQR =0.579-0.607; mdn =0.692, IQR =0.651-0.718 for comparison with T1-w and T2-w images), compared to: GMMCI (mdn =0.491, IQR =0.458-0.507, P<5.60×10-4; mdn =0.495, IQR =0.487-0.533, P<5.60×10-4), DLMWL (mdn =0.292, IQR =0.248-0.317, P<5.60×10-4; mdn =0.191, IQR =0.179-0.243, P<5.60×10-4), PWA (mdn =0.423, IQR =0.383-0.455, P<5.60×10-4; mdn =0.448, IQR =0.414-0.463, P<5.60×10-4) and MoI (mdn =0.437, IQR =0.406-0.479, P<5.60×10-4; mdn =0.540, IQR =0.521-0.636, P<5.60×10-4), demonstrating superior contrast enhancement and sharpness compared to other methods. Conclusions: Based on the tumor CNR and Generalized Sobel Operator Analysis, the proposed PGMIF method demonstrated its capability of enhancing MRI tumor contrast while keeping the anatomical structures of the input images. It holds promises for NPC tumor delineation in radiotherapy.

3.
Cancers (Basel) ; 16(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38473363

RESUMO

Background: The development of advanced computational models for medical imaging is crucial for improving diagnostic accuracy in healthcare. This paper introduces a novel approach for virtual contrast enhancement (VCE) in magnetic resonance imaging (MRI), particularly focusing on nasopharyngeal cancer (NPC). Methods: The proposed model, Pixelwise Gradient Model with GAN for Virtual Contrast Enhancement (PGMGVCE), makes use of pixelwise gradient methods with Generative Adversarial Networks (GANs) to enhance T1-weighted (T1-w) and T2-weighted (T2-w) MRI images. This approach combines the benefits of both modalities to simulate the effects of gadolinium-based contrast agents, thereby reducing associated risks. Various modifications of PGMGVCE, including changing hyperparameters, using normalization methods (z-score, Sigmoid and Tanh) and training the model with T1-w or T2-w images only, were tested to optimize the model's performance. Results: PGMGVCE demonstrated a similar accuracy to the existing model in terms of mean absolute error (MAE) (8.56 ± 0.45 for Li's model; 8.72 ± 0.48 for PGMGVCE), mean square error (MSE) (12.43 ± 0.67 for Li's model; 12.81 ± 0.73 for PGMGVCE) and structural similarity index (SSIM) (0.71 ± 0.08 for Li's model; 0.73 ± 0.12 for PGMGVCE). However, it showed improvements in texture representation, as indicated by total mean square variation per mean intensity (TMSVPMI) (0.124 ± 0.022 for ground truth; 0.079 ± 0.024 for Li's model; 0.120 ± 0.027 for PGMGVCE), total absolute variation per mean intensity (TAVPMI) (0.159 ± 0.031 for ground truth; 0.100 ± 0.032 for Li's model; 0.153 ± 0.029 for PGMGVCE), Tenengrad function per mean intensity (TFPMI) (1.222 ± 0.241 for ground truth; 0.981 ± 0.213 for Li's model; 1.194 ± 0.223 for PGMGVCE) and variance function per mean intensity (VFPMI) (0.0811 ± 0.005 for ground truth; 0.0667 ± 0.006 for Li's model; 0.0761 ± 0.006 for PGMGVCE). Conclusions: PGMGVCE presents an innovative and safe approach to VCE in MRI, demonstrating the power of deep learning in enhancing medical imaging. This model paves the way for more accurate and risk-free diagnostic tools in medical imaging.

4.
IEEE J Biomed Health Inform ; 28(1): 100-109, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37624724

RESUMO

Recently, deep learning has been demonstrated to be feasible in eliminating the use of gadoliniumbased contrast agents (GBCAs) through synthesizing gadolinium-free contrast-enhanced MRI (GFCE-MRI) from contrast-free MRI sequences, providing the community with an alternative to get rid of GBCAs-associated safety issues in patients. Nevertheless, generalizability assessment of the GFCE-MRI model has been largely challenged by the high inter-institutional heterogeneity of MRI data, on top of the scarcity of multi-institutional data itself. Although various data normalization methods have been adopted to address the heterogeneity issue, it has been limited to single-institutional investigation and there is no standard normalization approach presently. In this study, we aimed at investigating generalizability of GFCE-MRI model using data from seven institutions by manipulating heterogeneity of MRI data under five popular normalization approaches. Three state-of-the-art neural networks were applied to map from T1-weighted and T2-weighted MRI to contrast-enhanced MRI (CE-MRI) for GFCE-MRI synthesis in patients with nasopharyngeal carcinoma. MRI data from three institutions were used separately to generate three uni-institution models and jointly for a tri-institution model. The five normalization methods were applied to normalize the data of each model. MRI data from the remaining four institutions served as external cohorts for model generalizability assessment. Quality of GFCE-MRI was quantitatively evaluated against ground-truth CE-MRI using mean absolute error (MAE) and peak signal-to-noise ratio(PSNR). Results showed that performance of all uni-institution models remarkably dropped on the external cohorts. By contrast, model trained using multi-institutional data with Z-Score normalization yielded the best model generalizability improvement.


Assuntos
Gadolínio , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Razão Sinal-Ruído
5.
Radiol Med ; 128(7): 828-838, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37300736

RESUMO

PURPOSE: This study aimed to discover intra-tumor heterogeneity signature and validate its predictive value for adjuvant chemotherapy (ACT) following concurrent chemoradiotherapy (CCRT) in locoregionally advanced nasopharyngeal carcinoma (LA-NPC). MATERIALS AND METHODS: 397 LA-NPC patients were retrospectively enrolled. Pre-treatment contrast-enhanced T1-weighted (CET1-w) MR images, clinical variables, and follow-up were retrospectively collected. We identified single predictive radiomic feature from primary gross tumor volume (GTVnp) and defined predicted subvolume by calculating voxel-wised feature mapping and within GTVnp. We independently validate predictive value of identified feature and associated predicted subvolume. RESULTS: Only one radiomic feature, gldm_DependenceVariance in 3 mm-sigma LoG-filtered image, was discovered as a signature. In the high-risk group determined by the signature, patients received CCRT + ACT achieved 3-year disease free survival (DFS) rate of 90% versus 57% (HR, 0.20; 95%CI, 0.05-0.94; P = 0.007) for CCRT alone. The multivariate analysis showed patients receiving CCRT + ACT had a HR of 0.21 (95%CI: 0.06-0.68, P = 0.009) for DFS compared to those receiving CCRT alone. The predictive value can also be generalized to the subvolume with multivariate HR of 0.27 (P = 0.017) for DFS. CONCLUSION: The signature with its heterogeneity mapping could be a reliable and explainable ACT decision-making tool in clinical practice.


Assuntos
Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/diagnóstico por imagem , Carcinoma Nasofaríngeo/tratamento farmacológico , Neoplasias Nasofaríngeas/diagnóstico por imagem , Neoplasias Nasofaríngeas/tratamento farmacológico , Estudos Retrospectivos , Cisplatino/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Quimioterapia Adjuvante/métodos , Quimiorradioterapia/métodos
6.
Radiother Oncol ; 183: 109578, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36822357

RESUMO

BACKGROUND AND PURPOSE: To investigate the radiomic feature (RF) repeatability via perturbation and its impact on cross-institutional prognostic model generalizability in Nasopharyngeal Carcinoma (NPC) patients. MATERIALS AND METHODS: 286 and 183 NPC patients from two institutions were included for model training and validation. Perturbations with random translations and rotations were applied to contrast-enhanced T1-weighted (CET1-w) MR images. RFs were extracted from primary tumor volume under a wide range of image filtering and discretization settings. RF repeatability was assessed by intraclass correlation coefficient (ICC), which was used to equally separate the RFs into low- and high-repeatable groups by the median value. After feature selection, multivariate Cox regression and Kaplan-Meier analysis were independently employed to develop and analyze prognostic models. Concordance index (C-index) and P-value from log-rank test were used to assess model performance. RESULTS: Most textural RFs from high-pass wavelet-filtered images were susceptible to image perturbations. It was more prominent when a smaller discretization bin number was used (e.g., 8, mean ICC = 0.69). Using high-repeatable RFs for model development yielded a significantly higher C-index (0.63) in the validation cohort than when only low-repeatable RFs were used (0.57, P = 0.024), suggesting higher model generalizability. Besides, significant risk stratification in the validation cohort was observed only when high-repeatable RFs were used (P < 0.001). CONCLUSION: Repeatability of RFs from high-pass wavelet-filtered CET1-w MR images of primary NPC tumor was poor, particularly when a smaller bin number was used. Exclusive use of high-repeatable RFs is suggested to safeguard model generalizability for wide-spreading clinical utilization.


Assuntos
Imageamento por Ressonância Magnética , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/diagnóstico por imagem , Carcinoma Nasofaríngeo/patologia , Prognóstico , Estimativa de Kaplan-Meier , Imageamento por Ressonância Magnética/métodos , Neoplasias Nasofaríngeas/diagnóstico por imagem , Neoplasias Nasofaríngeas/radioterapia , Neoplasias Nasofaríngeas/patologia
7.
Front Oncol ; 12: 974467, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313629

RESUMO

Background: Using high robust radiomic features in modeling is recommended, yet its impact on radiomic model is unclear. This study evaluated the radiomic model's robustness and generalizability after screening out low-robust features before radiomic modeling. The results were validated with four datasets and two clinically relevant tasks. Materials and methods: A total of 1,419 head-and-neck cancer patients' computed tomography images, gross tumor volume segmentation, and clinically relevant outcomes (distant metastasis and local-regional recurrence) were collected from four publicly available datasets. The perturbation method was implemented to simulate images, and the radiomic feature robustness was quantified using intra-class correlation of coefficient (ICC). Three radiomic models were built using all features (ICC > 0), good-robust features (ICC > 0.75), and excellent-robust features (ICC > 0.95), respectively. A filter-based feature selection and Ridge classification method were used to construct the radiomic models. Model performance was assessed with both robustness and generalizability. The robustness of the model was evaluated by the ICC, and the generalizability of the model was quantified by the train-test difference of Area Under the Receiver Operating Characteristic Curve (AUC). Results: The average model robustness ICC improved significantly from 0.65 to 0.78 (P< 0.0001) using good-robust features and to 0.91 (P< 0.0001) using excellent-robust features. Model generalizability also showed a substantial increase, as a closer gap between training and testing AUC was observed where the mean train-test AUC difference was reduced from 0.21 to 0.18 (P< 0.001) in good-robust features and to 0.12 (P< 0.0001) in excellent-robust features. Furthermore, good-robust features yielded the best average AUC in the unseen datasets of 0.58 (P< 0.001) over four datasets and clinical outcomes. Conclusions: Including robust only features in radiomic modeling significantly improves model robustness and generalizability in unseen datasets. Yet, the robustness of radiomic model has to be verified despite building with robust radiomic features, and tightly restricted feature robustness may prevent the optimal model performance in the unseen dataset as it may lower the discrimination power of the model.

8.
Life (Basel) ; 12(2)2022 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35207528

RESUMO

Significant lymph node shrinkage is common in patients with nasopharyngeal carcinoma (NPC) throughout radiotherapy (RT) treatment, causing ill-fitted thermoplastic masks (IfTMs). To deal with this, an ad hoc adaptive radiotherapy (ART) may be required to ensure accurate and safe radiation delivery and to maintain treatment efficacy. Presently, the entire procedure for evaluating an eligible ART candidate is time-consuming, resource-demanding, and highly inefficient. In the artificial intelligence paradigm, the pre-treatment identification of NPC patients at risk for IfTMs has become greatly demanding for achieving efficient ART eligibility screening, while no relevant studies have been reported. Hence, we aimed to investigate the capability of computed tomography (CT)-based neck nodal radiomics for predicting IfTM-triggered ART events in NPC patients via a multi-center setting. Contrast-enhanced CT and the clinical data of 124 and 58 NPC patients from Queen Elizabeth Hospital (QEH) and Queen Mary Hospital (QMH), respectively, were retrospectively analyzed. Radiomic (R), clinical (C), and combined (RC) models were developed using the ridge algorithm in the QEH cohort and evaluated in the QMH cohort using the median area under the receiver operating characteristics curve (AUC). Delong's test was employed for model comparison. Model performance was further assessed on 1000 replicates in both cohorts separately via bootstrapping. The R model yielded the highest "corrected" AUC of 0.784 (BCa 95%CI: 0.673-0.859) and 0.723 (BCa 95%CI: 0.534-0.859) in the QEH and QMH cohort following bootstrapping, respectively. Delong's test indicated that the R model performed significantly better than the C model in the QMH cohort (p < 0.0001), while demonstrating no significant difference compared to the RC model (p = 0.5773). To conclude, CT-based neck nodal radiomics was capable of predicting IfTM-triggered ART events in NPC patients in this multi-center study, outperforming the traditional clinical model. The findings of this study provide valuable insights for future study into developing an effective screening strategy for ART eligibility in NPC patients in the long run, ultimately alleviating the workload of clinical practitioners, streamlining ART procedural efficiency in clinics, and achieving personalized RT for NPC patients in the future.

9.
Cancers (Basel) ; 15(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36612236

RESUMO

This study aims to investigate the feasibility of improving the prognosis stratification of the N staging system of Nasopharyngeal Carcinoma (NPC) from quantitative spatial characterizations of metastatic lymph node (LN) for NPC in a multi-institutional setting. A total of 194 and 284 NPC patients were included from two local hospitals as the discovery and validation cohort. Spatial relationships between LN and the surrounding organs were quantified by both distance and angle histograms, followed by principal component analysis. Independent prognostic factors were identified and combined with the N stage into a new prognostic index by univariate and multivariate Cox regressions on disease-free survival (DFS). The new three-class risk stratification based on the constructed prognostic index demonstrated superior cross-institutional performance in DFS. The hazard ratios of the high-risk to low-risk group were 9.07 (p < 0.001) and 4.02 (p < 0.001) on training and validation, respectively, compared with 5.19 (p < 0.001) and 1.82 (p = 0.171) of N3 to N1. Our spatial characterizations of lymph node tumor anatomy improved the existing N-stage in NPC prognosis. Our quantitative approach may facilitate the discovery of new anatomical characteristics to improve patient staging in other diseases.

10.
Front Oncol ; 11: 792024, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35174068

RESUMO

PURPOSE: To investigate the role of different multi-organ omics-based prediction models for pre-treatment prediction of Adaptive Radiotherapy (ART) eligibility in patients with nasopharyngeal carcinoma (NPC). METHODS AND MATERIALS: Pre-treatment contrast-enhanced computed tomographic and magnetic resonance images, radiotherapy dose and contour data of 135 NPC patients treated at Hong Kong Queen Elizabeth Hospital were retrospectively analyzed for extraction of multi-omics features, namely Radiomics (R), Morphology (M), Dosiomics (D), and Contouromics (C), from a total of eight organ structures. During model development, patient cohort was divided into a training set and a hold-out test set in a ratio of 7 to 3 via 20 iterations. Four single-omics models (R, M, D, C) and four multi-omics models (RD, RC, RM, RMDC) were developed on the training data using Ridge and Multi-Kernel Learning (MKL) algorithm, respectively, under 10-fold cross validation, and evaluated on hold-out test data using average area under the receiver-operator-characteristics curve (AUC). The best-performing single-omics model was first determined by comparing the AUC distribution across the 20 iterations among the four single-omics models using two-sided student t-test, which was then retrained using MKL algorithm for a fair comparison with the four multi-omics models. RESULTS: The R model significantly outperformed all other three single-omics models (all p-value<0.0001), achieving an average AUC of 0.942 (95%CI: 0.938-0.946) and 0.918 (95%CI: 0.903-0.933) in training and hold-out test set, respectively. When trained with MKL, the R model (R_MKL) yielded an increased AUC of 0.984 (95%CI: 0.981-0.988) and 0.927 (95%CI: 0.905-0.948) in training and hold-out test set respectively, while demonstrating no significant difference as compared to all studied multi-omics models in the hold-out test sets. Intriguingly, Radiomic features accounted for the majority of the final selected features, ranging from 64% to 94%, in all the studied multi-omics models. CONCLUSIONS: Among all the studied models, the Radiomic model was found to play a dominant role for ART eligibility in NPC patients, and Radiomic features accounted for the largest proportion of features in all the multi-omics models.

11.
Front Oncol ; 9: 1050, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681588

RESUMO

Background and purpose: Adaptive radiotherapy (ART) can compensate for the dosimetric impacts induced by anatomic and geometric variations in patients with nasopharyngeal carcinoma (NPC); Yet, the need for ART can only be assessed during the radiation treatment and the implementation of ART is resource intensive. Therefore, we aimed to determine tumoral biomarkers using pre-treatment MR images for predicting ART eligibility in NPC patients prior to the start of treatment. Methods: Seventy patients with biopsy-proven NPC (Stage II-IVB) in 2015 were enrolled into this retrospective study. Pre-treatment contrast-enhanced T1-w (CET1-w), T2-w MR images were processed and filtered using Laplacian of Gaussian (LoG) filter before radiomic features extraction. A total of 479 radiomics features, including the first-order (n = 90), shape (n = 14), and texture features (n = 375), were initially extracted from Gross-Tumor-Volume of primary tumor (GTVnp) using CET1-w, T2-w MR images. Patients were randomly divided into a training set (n = 51) and testing set (n = 19). The least absolute shrinkage and selection operator (LASSO) logistic regression model was applied for radiomic model construction in training set to select the most predictive features to predict patients who were replanned and assessed in the testing set. A double cross-validation approach of 100 resampled iterations with 3-fold nested cross-validation was employed in LASSO during model construction. The predictive performance of each model was evaluated using the area under the receiver operator characteristic (ROC) curve (AUC). Results: In the present cohort, 13 of 70 patients (18.6%) underwent ART. Average AUCs in training and testing sets were 0.962 (95%CI: 0.961-0.963) and 0.852 (95%CI: 0.847-0.857) with 8 selected features for CET1-w model; 0.895 (95%CI: 0.893-0.896) and 0.750 (95%CI: 0.745-0.755) with 6 selected features for T2-w model; and 0.984 (95%CI: 0.983-0.984) and 0.930 (95%CI: 0.928-0.933) with 6 selected features for joint T1-T2 model, respectively. In general, the joint T1-T2 model outperformed either CET1-w or T2-w model alone. Conclusions: Our study successfully showed promising capability of MRI-based radiomics features for pre-treatment identification of ART eligibility in NPC patients.

12.
J Appl Clin Med Phys ; 16(6): 23-29, 2015 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-26699551

RESUMO

The purpose of this study was to evaluate the dosimetric profiles and delivery accuracy of running-start-stop (RSS) delivery in tomotherapy and to present initial quality assurance (QA) results on the accuracy of the dynamic jaw motion, dosimetric penumbrae of the RSS dynamic jaw and the static jaw were measured by radiographic films. Delivery accuracy of the RSS was evaluated by gamma analysis on film measurements of 12 phantom plans. Consistency in the performance of RSS was evaluated by QA procedures over the first nine months after the installation of the feature. These QA were devised to check: 1) positional accuracy of moving jaws; 2) consistency of relative radiation output collimated by discrete and continuously sweeping jaws; 3) consistency of field widths and profiles. In the longitudinal direction, the dose penumbra in RSS delivery was reduced from 17.3mm to 10.2 mm for 2.5 cm jaw, and from 33.2 mm to 9.6 mm for 5 cm jaw. Gamma analysis on the twelve plans revealed that over 90% of the voxels in the proximity of the penumbra region satisfied the gamma criteria of 2% dose difference and 2 mm distance-to-agreement. The initial QA results during the first nine months after installation of the RSS are presented. Jaw motion was shown to be accurate with maximum encoder error less than 0.42 mm. The consistency of relative output for discrete and continuously sweeping jaws was within 1.2%. Longitudinal radiation profiles agreed to the reference profile with maximum gamma < 1 and field width error < 1.8%. With the same jaw width, RSS showed better dose penumbrae compared to those from static jaw delivery. The initial QA results on the accuracy of moving jaws, reproducibility of dosimetric output and profiles were satisfactory.


Assuntos
Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Algoritmos , Humanos , Movimento (Física) , Imagens de Fantasmas , Garantia da Qualidade dos Cuidados de Saúde , Radiometria/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/normas , Planejamento da Radioterapia Assistida por Computador/estatística & dados numéricos , Radioterapia de Intensidade Modulada/normas , Radioterapia de Intensidade Modulada/estatística & dados numéricos , Reprodutibilidade dos Testes , Filme para Raios X
13.
Med Dosim ; 39(1): 44-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24321222

RESUMO

To investigate the dosimetric difference amongst TomoTherapy, sliding-window intensity-modulated radiotherapy (IMRT), and RapidArc radiotherapy in the treatment of late-stage nasopharyngeal carcinoma (NPC). Ten patients with late-stage (Stage III or IV) NPC treated with TomoTherapy or IMRT were selected for the study. Treatment plans with these 3 techniques were devised according to departmental protocol. Dosimetric parameters for organ at risk and treatment targets were compared between TomoTherapy and IMRT, TomoTherapy and RapidArc, and IMRT and RapidArc. Comparison amongst the techniques was done by statistical tests on the dosimetric parameters, total monitor unit (MU), and expected delivery time. All 3 techniques achieved similar target dose coverage. TomoTherapy achieved significantly lower doses in lens and mandible amongst the techniques. It also achieved significantly better dose conformity to the treatment targets. RapidArc achieved significantly lower dose to the eye and normal tissue, lower total MU, and less delivery time. The dosimetric advantages of the 3 techniques were identified in the treatment of late-stage NPC. This may serve as a guideline for selection of the proper technique for different clinical cases.


Assuntos
Neoplasias Nasofaríngeas/radioterapia , Órgãos em Risco/efeitos da radiação , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Feminino , Humanos , Masculino , Neoplasias Nasofaríngeas/patologia , Estadiamento de Neoplasias , Proteção Radiológica/métodos , Reprodutibilidade dos Testes , Medição de Risco , Sensibilidade e Especificidade , Resultado do Tratamento
14.
Eur J Radiol ; 81(4): 784-8, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21376492

RESUMO

PURPOSE: To examine the potential of dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) for differential diagnosis of head and neck cancer. METHODS AND MATERIALS: DCE-MRI was performed in 26 patients with untreated squamous cell carcinoma (SCC), 28 undifferentiated carcinoma (UD) and 8 lymphoma. DCE-MRI was analyzed with the pharmacokinetic model proposed by Tofts and Kermode to produce the three DCE parameters: k(trans), v(e) and v(p). Areas under the curve (AUC) at the initial 60 and 90s (AUC60 and AUC90) were also recorded. Histogram analysis was conducted to obtain the mean, 25%, 50%, 75% and 95% percentile values and the Kruskal-Wallis test was used to compare the DCE parameters between the three groups of cancer. RESULTS: k(trans), AUC60 and AUC90 showed significant differences (p<0.01) between UD/SCC and UD/lymphoma, but not between SCC/lymphoma. The mean AUC90 demonstrated the highest accuracy of 78% (sensitivity of 68% and specificity of 88%) for distinguishing UD and SCC, and the 75% percentile AUC90 provided the highest accuracy of 97% (sensitivity of 100% and specificity of 88.5%) for distinguishing UD and lymphoma. CONCLUSIONS: There are significant differences in the DCE parameters which show the potential for distinguishing UD from SCC or lymphoma.


Assuntos
Carcinoma/patologia , Neoplasias de Cabeça e Pescoço/patologia , Linfoma/patologia , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Meios de Contraste , Diagnóstico Diferencial , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Adulto Jovem
15.
Radiat Res ; 175(3): 291-6, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21388272

RESUMO

The parotid gland is an important organ at risk of complications of radiotherapy for head and neck cancer. In this study, we examined the potential of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for assessment of radiation injury to the parotid glands. DCE-MRI was performed before and 3 months after radiotherapy in patients treated for head and neck cancer. DCE-MRI was analyzed using the pharmacokinetic model proposed by Tofts and Kermode to produce three DCE parameters: k(trans), v(e) and v(p). These parameters were correlated with the dose of radiation delivered to the parotid glands and the degree of radiation-induced parotid atrophy. The mean radiation dose received by the parotid glands was 47.1 ± 6.6 Gy. All patients received concurrent chemotherapy. There was a significant rise in all three parameters after therapy (P < 0.0001). Baseline v(e) and v(p) and the post-treatment rise in v(e) correlated with parotid gland atrophy (P  =  0.0008, 0.0003 and 0.0022, respectively). DCE-MRI has the potential to be used as a non-invasive technique for predicting and assessing radiation injury in the parotid glands.


Assuntos
Meios de Contraste , Neoplasias de Cabeça e Pescoço/radioterapia , Imageamento por Ressonância Magnética/métodos , Glândula Parótida/efeitos da radiação , Lesões por Radiação/diagnóstico , Lesões por Radiação/etiologia , Adulto , Atrofia/diagnóstico , Atrofia/etiologia , Ensaios Clínicos como Assunto , Relação Dose-Resposta à Radiação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Glândula Parótida/patologia , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...