Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Small ; 20(10): e2306168, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37880910

RESUMO

Coronary artery disease (CAD) is the most common type of heart disease and represents the leading cause of death in both men and women worldwide. Early detection of CAD is crucial for decreasing mortality, prolonging survival, and improving patient quality of life. Herein, a non-invasive is described, nanoparticle-based diagnostic technology which takes advantages of proteomic changes in the nano-bio interface for CAD detection. Nanoparticles (NPs) exposed to biological fluids adsorb on their surface a layer of proteins, the "protein corona" (PC). Pathological changes that alter the plasma proteome can directly result in changes in the PC. By forming disease-specific PCs on six NPs with varying physicochemical properties, a PC-based sensor array is developed for detection of CAD using specific PC pattern recognition. While the PC of a single NP may not provide the required specificity, it is reasoned that multivariate PCs across NPs with different surface chemistries, can provide the desirable information to selectively discriminate the condition under investigation. The results suggest that such an approach can detect CAD with an accuracy of 92.84%, a sensitivity of 87.5%, and a specificity of 82.5%. These new findings demonstrate the potential of PC-based sensor array detection systems for clinical use.


Assuntos
Doença da Artéria Coronariana , Nanopartículas , Coroa de Proteína , Feminino , Humanos , Coroa de Proteína/química , Doença da Artéria Coronariana/diagnóstico , Proteômica , Qualidade de Vida , Nanopartículas/química , Proteoma
2.
EBioMedicine ; 95: 104758, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37598461

RESUMO

BACKGROUND: Identifying novel epigenetic signatures associated with serum immunoglobulin E (IgE) may improve our understanding of molecular mechanisms underlying asthma and IgE-mediated diseases. METHODS: We performed an epigenome-wide association study using whole blood from Framingham Heart Study (FHS; n = 3,471, 46% females) participants and validated results using the Childhood Asthma Management Program (CAMP; n = 674, 39% females) and the Genetic Epidemiology of Asthma in Costa Rica Study (CRA; n = 787, 41% females). Using the closest gene to each IgE-associated CpG, we highlighted biologically plausible pathways underlying IgE regulation and analyzed the transcription patterns linked to IgE-associated CpGs (expression quantitative trait methylation loci; eQTMs). Using prior UK Biobank summary data from genome-wide association studies of asthma and allergy, we performed Mendelian randomization (MR) for causal inference testing using the IgE-associated CpGs from FHS with methylation quantitative trait loci (mQTLs) as instrumental variables. FINDINGS: We identified 490 statistically significant differentially methylated CpGs associated with IgE in FHS, of which 193 (39.3%) replicated in CAMP and CRA (FDR < 0.05). Gene ontology analysis revealed enrichment in pathways related to transcription factor binding, asthma, and other immunological processes. eQTM analysis identified 124 cis-eQTMs for 106 expressed genes (FDR < 0.05). MR in combination with drug-target analysis revealed CTSB and USP20 as putatively causal regulators of IgE levels (Bonferroni adjusted P < 7.94E-04) that can be explored as potential therapeutic targets. INTERPRETATION: By integrating eQTM and MR analyses in general and clinical asthma populations, our findings provide a deeper understanding of the multidimensional inter-relations of DNA methylation, gene expression, and IgE levels. FUNDING: US NIH/NHLBI grants: P01HL132825, K99HL159234. N01-HC-25195 and HHSN268201500001I.


Assuntos
Asma , Metilação de DNA , Feminino , Humanos , Criança , Masculino , Epigenoma , Estudo de Associação Genômica Ampla , Asma/genética , Imunoglobulina E , Ubiquitina Tiolesterase
3.
Diagnostics (Basel) ; 13(14)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37510097

RESUMO

For more than two years, lingering sequalae of COVID-19 have been extensively investigated. Approximately 10% of individuals infected by COVID-19 have been found to experience long-term symptoms termed "long COVID-19". The neurological and psychiatric manifestations of long COVID-19 are of particular concern. While pathogenesis remains unclear, emerging imaging studies have begun to better elucidate certain pathological manifestation. Of specific interest is imaging with [18F]FDG PET which directly reflects cellular glycolysis often linked to metabolic and inflammatory processes. Seeking to understand the molecular basis of neurological features of long COVID-19, this review encompasses the most recent [18F]FDG PET literature in this area.

4.
Epigenetics ; 18(1): 2211361, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37233989

RESUMO

BACKGROUND: Dietary intake of antioxidants such as vitamins C and E protect against oxidative stress, and may also be associated with altered DNA methylation patterns. METHODS: We meta-analysed epigenome-wide association study (EWAS) results from 11,866 participants across eight population-based cohorts to evaluate the association between self-reported dietary and supplemental intake of vitamins C and E with DNA methylation. EWAS were adjusted for age, sex, BMI, caloric intake, blood cell type proportion, smoking status, alcohol consumption, and technical covariates. Significant results of the meta-analysis were subsequently evaluated in gene set enrichment analysis (GSEA) and expression quantitative trait methylation (eQTM) analysis. RESULTS: In meta-analysis, methylation at 4,656 CpG sites was significantly associated with vitamin C intake at FDR ≤ 0.05. The most significant CpG sites associated with vitamin C (at FDR ≤ 0.01) were enriched for pathways associated with systems development and cell signalling in GSEA, and were associated with downstream expression of genes enriched in the immune response in eQTM analysis. Furthermore, methylation at 160 CpG sites was significantly associated with vitamin E intake at FDR ≤ 0.05, but GSEA and eQTM analysis of the top most significant CpG sites associated with vitamin E did not identify significant enrichment of any biological pathways investigated. CONCLUSIONS: We identified significant associations of many CpG sites with vitamin C and E intake, and our results suggest that vitamin C intake may be associated with systems development and the immune response.


Assuntos
Ácido Ascórbico , Metilação de DNA , Humanos , Epigenoma , Vitaminas/farmacologia , Vitamina E , Estudo de Associação Genômica Ampla/métodos , Ilhas de CpG , Epigênese Genética
5.
Sci Rep ; 13(1): 8002, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37198231

RESUMO

Rheumatoid arthritis (RA) is a risk factor for atherosclerotic cardiovascular diseases (CVD). Given the critical roles of the immune system and inflammatory signals in the pathogenesis of CVD, we hypothesized that interrogation of CVD-related proteins using integrative genomics might provide new insights into the pathophysiology of RA. We utilized two-sample Mendelian randomization (MR) for causal inference between circulating protein levels and RA by incorporating genetic variants, followed by colocalization to characterize the causal associations. Genetic variants from three sources were obtained: those associated with 71 CVD-related proteins measured in nearly 7000 Framingham Heart Study participants, a published genome-wide association study (GWAS) of RA (19 234 cases, 61 565 controls), and GWAS of rheumatoid factor (RF) levels from the UK Biobank (n = 30 565). We identified the soluble receptor for advanced glycation end products (sRAGE), a critical inflammatory pathway protein, as putatively causal and protective for both RA (odds ratio per 1-standard deviation increment in inverse-rank normalized sRAGE level = 0.364; 95% confidence interval 0.342-0.385; P = 6.40 × 10-241) and RF levels (ß [change in RF level per sRAGE increment] = - 1.318; SE = 0.434; P = 0.002). Using an integrative genomic approach, we highlight the AGER/RAGE axis as a putatively causal and promising therapeutic target for RA.


Assuntos
Artrite Reumatoide , Doenças Cardiovasculares , Humanos , Receptor para Produtos Finais de Glicação Avançada/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Artrite Reumatoide/genética , Polimorfismo de Nucleotídeo Único , Doenças Cardiovasculares/complicações , Produtos Finais de Glicação Avançada
6.
Front Immunol ; 14: 1080071, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36793728

RESUMO

Measurement of circulating immunoglobulin E (IgE) concentration is helpful for diagnosing and treating asthma and allergic diseases. Identifying gene expression signatures associated with IgE might elucidate novel pathways for IgE regulation. To this end, we performed a discovery transcriptome-wide association study to identify differentially expressed genes associated with circulating IgE levels in whole-blood derived RNA from 5,345 participants in the Framingham Heart Study across 17,873 mRNA gene-level transcripts. We identified 216 significant transcripts at a false discovery rate <0.05. We conducted replication using the meta-analysis of two independent external studies: the Childhood Asthma Management Program (n=610) and the Genetic Epidemiology of Asthma in Costa Rica Study (n=326); we then reversed the discovery and replication cohorts, which revealed 59 significant genes that replicated in both directions. Gene ontology analysis revealed that many of these genes were implicated in immune function pathways, including defense response, inflammatory response, and cytokine production. Mendelian randomization (MR) analysis revealed four genes (CLC, CCDC21, S100A13, and GCNT1) as putatively causal (p<0.05) regulators of IgE levels. GCNT1 (beta=1.5, p=0.01)-which is a top result in the MR analysis of expression in relation to asthma and allergic diseases-plays a role in regulating T helper type 1 cell homing, lymphocyte trafficking, and B cell differentiation. Our findings build upon prior knowledge of IgE regulation and provide a deeper understanding of underlying molecular mechanisms. The IgE-associated genes that we identified-particularly those implicated in MR analysis-can be explored as promising therapeutic targets for asthma and IgE-related diseases.


Assuntos
Asma , Hipersensibilidade , Imunoglobulina E , Humanos , Asma/genética , Hipersensibilidade/genética , Imunoglobulina E/sangue , Testes Imunológicos , Transcriptoma
7.
PLoS One ; 17(5): e0268293, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35544531

RESUMO

BACKGROUND: Biomarkers common to chronic kidney disease (CKD) and cardiovascular disease (CVD) may reflect early impairments underlying both diseases. METHODS: We evaluated associations of 71 CVD-related plasma proteins measured in 2,873 Framingham Heart Study (FHS) Offspring cohort participants with cross-sectional continuous eGFR and with longitudinal change in eGFR from baseline to follow-up (ΔeGFR). We also evaluated the associations of the 71 CVD proteins with the following dichotomous secondary outcomes: prevalent CKD stage ≥3 (cross-sectional), new-onset CKD stage ≥3 (longitudinal), and rapid decline in eGFR (longitudinal). Proteins significantly associated with eGFR and ΔeGFR were subsequently validated in 3,951 FHS Third Generation cohort participants and were tested using Mendelian randomization (MR) analysis to infer putatively causal relations between plasma protein biomarkers and kidney function. RESULTS: In cross-sectional analysis, 37 protein biomarkers were significantly associated with eGFR at FDR<0.05 in the FHS Offspring cohort and 20 of these validated in the FHS Third Generation cohort at p<0.05/37. In longitudinal analysis, 27 protein biomarkers were significantly associated with ΔeGFR at FDR<0.05 and 12 of these were validated in the FHS Third Generation cohort at p<0.05/27. Additionally, 35 protein biomarkers were significantly associated with prevalent CKD, five were significantly associated with new-onset CKD, and 17 were significantly associated with rapid decline in eGFR. MR suggested putatively causal relations of melanoma cell adhesion molecule (MCAM; -0.011±0.003 mL/min/1.73m2, p = 5.11E-5) and epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1; -0.006±0.002 mL/min/1.73m2, p = 0.0001) concentration with eGFR. DISCUSSION/CONCLUSIONS: Eight protein biomarkers were consistently associated with eGFR in cross-sectional and longitudinal analysis in both cohorts and may capture early kidney impairment; others were implicated in association and causal inference analyses. A subset of CVD protein biomarkers may contribute causally to the pathogenesis of kidney impairment and should be studied as targets for CKD treatment and early prevention.


Assuntos
Doenças Cardiovasculares , Insuficiência Renal Crônica , Biomarcadores , Proteínas Sanguíneas , Estudos Transversais , Proteínas da Matriz Extracelular , Feminino , Taxa de Filtração Glomerular , Humanos , Rim , Estudos Longitudinais , Masculino
8.
J Allergy Clin Immunol ; 149(6): 1992-1997.e12, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34974068

RESUMO

BACKGROUND: Asthma is a complex respiratory condition caused by environmental and genetic factors. Although lower concentrations of the anti-inflammatory protein soluble receptor for advanced glycation end products (sRAGE) have been associated with asthma in humans and mouse models, it is uncertain whether sRAGE plays a causal role in asthma. OBJECTIVE: We designed a 2-stage study of sRAGE in relation to asthma with association analysis in FHS participants as well as causal inference testing using Mendelian randomization (MR). METHODS: We measured plasma levels of sRAGE and performed cross-sectional analysis to examine the association between plasma sRAGE concentration and asthma status in 6546 FHS participants. We then used sRAGE protein advanced glycation end products (pQTLs) derived from a genome-wide association study of plasma sRAGE levels in ∼7000 FHS participants with UK Biobank asthma genome-wide association study in MR to consider sRAGE as a putatively causal protein for asthma. We also performed replication MR using an externally derived sRAGE pQTL from the INTERVAL study. Last, we conducted colocalization using cis-pQTL variants at the advanced glycosylation end-product specific receptor (AGER) locus with variants from the UK Biobank asthma genome-wide association study. RESULTS: Association analysis revealed that each 1 SD increment in sRAGE concentration was associated with a 14% lower odds of asthma in FHS participants (95% CI 0.76-0.96). MR identified sRAGE as putatively causal for and protective against asthma on the basis of self-reported (odds ratio [per 1 SE increment in inverse-rank-normalized sRAGE] = 0.97, 95% CI 0.95-0.99; P = .005) and doctor-diagnosed asthma (odds ratio = 0.97, 95% CI 0.95-0.99; P = .011). CONCLUSION: Through this genomic approach, we identified sRAGE as a putatively causal, biologically important, and protective protein in relation to asthma. Functional studies in cell/animal models are needed to confirm our findings.


Assuntos
Asma , Estudo de Associação Genômica Ampla , Antígenos de Neoplasias , Asma/genética , Biomarcadores , Estudos Transversais , Genômica , Humanos , Proteínas Quinases Ativadas por Mitógeno , Proteínas/genética , Receptor para Produtos Finais de Glicação Avançada/genética
9.
Chest ; 161(1): 76-84, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34237330

RESUMO

BACKGROUND: There are few clinically useful circulating biomarkers of lung function and lung disease. We hypothesized that genome-wide association studies (GWAS) of circulating proteins in conjunction with GWAS of pulmonary traits represents a clinically relevant approach to identifying causal proteins and therapeutically useful insights into mechanisms related to lung function and disease. STUDY QUESTION: Can an integrative genomic strategy using GWAS of plasma soluble receptor for advanced glycation end-products (sRAGE) levels in conjunction with GWAS of lung function traits identify putatively causal relations of sRAGE to lung function? STUDY DESIGN AND METHODS: Plasma sRAGE levels were measured in 6,861 Framingham Heart Study participants and GWAS of sRAGE was conducted to identify protein quantitative trait loci (pQTL), including cis-pQTL variants at the sRAGE protein-coding gene locus (AGER). We integrated sRAGE pQTL variants with variants from GWAS of lung traits. Colocalization of sRAGE pQTL variants with lung trait GWAS variants was conducted, and Mendelian randomization was performed using sRAGE cis-pQTL variants to infer causality of sRAGE for pulmonary traits. Cross-sectional and longitudinal protein-trait association analyses were conducted for sRAGE in relation to lung traits. RESULTS: Colocalization identified shared genetic signals for sRAGE with lung traits. Mendelian randomization analyses suggested protective causal relations of sRAGE to several pulmonary traits. Protein-trait association analyses demonstrated higher sRAGE levels to be cross-sectionally and longitudinally associated with preserved lung function. INTERPRETATION: sRAGE is produced by type I alveolar cells, and it acts as a decoy receptor to block the inflammatory cascade. Our integrative genomics approach provides evidence for sRAGE as a causal and protective biomarker of lung function, and the pattern of associations is suggestive of a protective role of sRAGE against restrictive lung physiology. We speculate that targeting the AGER/sRAGE axis may be therapeutically beneficial for the treatment and prevention of inflammation-related lung disease.


Assuntos
Pneumopatias/genética , Pulmão/fisiologia , Receptor para Produtos Finais de Glicação Avançada/genética , Adulto , Idoso , Feminino , Volume Expiratório Forçado , Estudo de Associação Genômica Ampla , Genômica , Humanos , Pulmão/fisiopatologia , Pneumopatias/fisiopatologia , Masculino , Análise da Randomização Mendeliana , Pessoa de Meia-Idade , Fatores de Proteção , Locos de Características Quantitativas , Testes de Função Respiratória , Capacidade Vital
10.
Cardiovasc Res ; 117(13): 2652-2663, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-33751034

RESUMO

AIMS: Recent evidence suggests that 'vulnerable plaques', which have received intense attention as underlying mechanism of acute coronary syndromes over the decades, actually rarely rupture and cause clinical events. Superficial plaque erosion has emerged as a growing cause of residual thrombotic complications of atherosclerosis in an era of increased preventive measures including lipid lowering, antihypertensive therapy, and smoking cessation. The mechanisms of plaque erosion remain poorly understood, and we currently lack validated effective diagnostics or therapeutics for superficial erosion. Eroded plaques have a rich extracellular matrix, an intact fibrous cap, sparse lipid, and few mononuclear cells, but do harbour neutrophil extracellular traps (NETs). We recently reported that NETs amplify and propagate the endothelial damage at the site of arterial lesions that recapitulate superficial erosion in mice. We showed that genetic loss of protein arginine deiminase (PAD)-4 function inhibited NETosis and preserved endothelial integrity. The current study used systemic administration of targeted nanoparticles to deliver an agent that limits NETs formation to probe mechanisms of and demonstrate a novel therapeutic approach to plaque erosion that limits endothelial damage. METHODS AND RESULTS: We developed Collagen IV-targeted nanoparticles (Col IV NP) to deliver PAD4 inhibitors selectively to regions of endothelial cell sloughing and collagen IV-rich basement membrane exposure. We assessed the binding capability of the targeting ligand in vitro and evaluated Col IV NP targeting to areas of denuded endothelium in vivo in a mouse preparation that recapitulates features of superficial erosion. Delivery of the PAD4 inhibitor GSK484 reduced NET accumulation at sites of intimal injury and preserved endothelial continuity. CONCLUSIONS: NPs directed to Col IV show selective uptake and delivery of their payload to experimentally eroded regions, illustrating their translational potential. Our results further support the role of PAD4 and NETs in superficial erosion.


Assuntos
Aterosclerose/tratamento farmacológico , Colágeno Tipo IV/metabolismo , Portadores de Fármacos , Células Endoteliais/efeitos dos fármacos , Inibidores Enzimáticos/administração & dosagem , Armadilhas Extracelulares/metabolismo , Nanopartículas , Proteína-Arginina Desiminase do Tipo 4/antagonistas & inibidores , Animais , Aterosclerose/enzimologia , Aterosclerose/patologia , Membrana Basal/metabolismo , Técnicas de Cultura de Células em Três Dimensões , Células Cultivadas , Colágeno Tipo IV/química , Modelos Animais de Doenças , Composição de Medicamentos , Liberação Controlada de Fármacos , Células Endoteliais/enzimologia , Células Endoteliais/patologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Masculino , Camundongos Knockout para ApoE , Nanotecnologia , Placa Aterosclerótica , Ligação Proteica , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Propriedades de Superfície , Distribuição Tecidual
11.
Endocrinol Metab (Seoul) ; 36(1): 157-170, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33677937

RESUMO

BACKGROUND: Glucagon-like peptide-1 (GLP-1) analogues regulate glucose homeostasis and have anti-inflammatory properties, but cause gastrointestinal side effects. The fibroblast growth factor 21 (FGF21) is a hormonal regulator of lipid and glucose metabolism that has poor pharmacokinetic properties, including a short half-life. To overcome these limitations, we investigated the effect of a low-dose combination of a GLP-1 analogue and FGF21 on atherosclerosis-related molecular pathways. METHODS: C57BL/6J mice were fed a high-fat diet for 30 weeks followed by an atherogenic diet for 10 weeks and were divided into four groups: control (saline), liraglutide (0.3 mg/kg/day), FGF21 (5 mg/kg/day), and low-dose combination treatment with liraglutide (0.1 mg/kg/day) and FGF21 (2.5 mg/kg/day) (n=6/group) for 6 weeks. The effects of each treatment on various atherogenesisrelated pathways were assessed. RESULTS: Liraglutide, FGF21, and their low-dose combination significantly reduced atheromatous plaque in aorta, decreased weight, glucose, and leptin levels, and increased adiponectin levels. The combination treatment upregulated the hepatic uncoupling protein-1 (UCP1) and Akt1 mRNAs compared with controls. Matric mentalloproteinase-9 (MMP-9), monocyte chemoattractant protein-1 (MCP-1), and intercellular adhesion molecule-1 (ICAM-1) were downregulated and phosphorylated Akt (p-Akt) and phosphorylated extracellular signal-regulated kinase (p-ERK) were upregulated in liver of the liraglutide-alone and combination-treatment groups. The combination therapy also significantly decreased the proliferation of vascular smooth muscle cells. Caspase-3 was increased, whereas MMP-9, ICAM-1, p-Akt, and p-ERK1/2 were downregulated in the liraglutide-alone and combination-treatment groups. CONCLUSION: Administration of a low-dose GLP-1 analogue and FGF21 combination exerts beneficial effects on critical pathways related to atherosclerosis, suggesting the synergism of the two compounds.


Assuntos
Aterosclerose , Diabetes Mellitus Tipo 2 , Animais , Aterosclerose/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Fatores de Crescimento de Fibroblastos , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL
12.
Adv Healthc Mater ; 10(2): e2000948, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33169521

RESUMO

As the population affected by Alzheimer's disease (AD) grows, so does the need for a noninvasive and accurate diagnostic tool. Current research reveals that AD pathogenesis begins as early as decades before clinical symptoms. The unique properties of nanoparticles (NPs) may be exploited to develop noninvasive diagnostics for early detection of AD. After exposure of NPs to biological fluids, the NP surface is altered by an unbiased but selective and reproducible adsorption of biomolecules commonly referred to as the biomolecular corona or protein corona (PC). The discovery that the plasma proteome may be differentially altered during health and disease leads to the concept of disease-specific PCs. Herein, the disease-specific PCs formed around NPs in a multi-NPs platform are employed to successfully identify subtle changes in plasma protein patterns and detect AD (>92% specificity and ≈100% sensitivity). Similar discrimination power is achieved using banked plasma samples from a cohort of patients several years prior to their diagnosis with AD. With the nanoplatform's analytic ability to analyze pathological proteomic changes into a disease-specific identifier, this promising, noninvasive technology with implications for early detection and intervention could benefit not only patients with AD but other diseases as well.


Assuntos
Doença de Alzheimer , Nanopartículas , Coroa de Proteína , Doença de Alzheimer/diagnóstico , Humanos , Proteoma , Proteômica
13.
Int J Mol Sci ; 21(18)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957703

RESUMO

Fibroblast growth factor 21 (FGF21) is a hormonal regulator of lipid and glucose metabolism. We aimed to investigate the effect of an FGF21 analogue (LY2405319) on the development of atherosclerosis and its associated parameters. ApoE-/- mice were fed an atherogenic diet for 14 weeks and were randomly assigned to control (saline) or FGF21 (0.1 mg/kg) treatment group (n = 10/group) for 5 weeks. Plaque size in the aortic arch/valve areas and cardiovascular risk markers were evaluated in blood and tissues. The effects of FGF21 on various atherogenesis-related pathways were also assessed. Atherosclerotic plaque areas in the aortic arch/valve were significantly smaller in the FGF21 group than in controls after treatment. FGF21 significantly decreased body weight and glucose concentrations, and increased circulating adiponectin levels. FGF21 treatment alleviated insulin resistance and decreased circulating concentrations of triglycerides, which were significantly correlated with plaque size. FGF21 treatment reduced lipid droplets in the liver and decreased fat cell size and inflammatory cell infiltration in the abdominal visceral fat compared with the control group. The monocyte chemoattractant protein-1 levels were decreased and ß-hydroxybutyrate levels were increased by FGF21 treatment. Uncoupling protein 1 expression in subcutaneous fat was greater and fat cell size in brown fat was smaller in the FGF21 group compared with controls. Administration of FGF21 showed anti-atherosclerotic effects in atherosclerosis-prone mice and exerted beneficial effects on critical atherosclerosis pathways. Improvements in inflammation and insulin resistance seem to be mechanisms involved in the mitigation of atherosclerosis by FGF21 therapy.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Aterosclerose/metabolismo , Fatores de Crescimento de Fibroblastos/administração & dosagem , Metaboloma/efeitos dos fármacos , Placa Aterosclerótica/tratamento farmacológico , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerose/tratamento farmacológico , Peso Corporal/efeitos dos fármacos , Dieta Aterogênica , Modelos Animais de Doenças , Teste de Tolerância a Glucose , Gordura Intra-Abdominal/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Placa Aterosclerótica/metabolismo , Proteína Desacopladora 1/metabolismo
14.
Biochem Biophys Res Commun ; 497(4): 1149-1153, 2018 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-28131830

RESUMO

Adipogenesis is the process of differentiation from preadipocytes to adipocytes and is orchestrated by various transcription factors, such as the peroxisome proliferator-activated receptor gamma (PPARγ) and the CCAAT-enhancer-binding protein alpha (C/EBPα). Oxidative stress is also a crucial factor in adipogenesis, and adipocyte differentiation is affected by the cellular redox status. The nuclear factor E2-related factor 2 (Nrf2), which is a basic leucine zipper (bZIP) transcription factor, acts as a regulator of cellular oxidative stress. Although several previous studies examined the function of Nrf2 in adipogenesis, their results were controversial. In this study, we investigated whether the suppression of Nrf2 in 3T3-L1 cells affected adipogenesis. We found that adipogenesis master regulator genes, such as PPARγ and C/EBPα, were downregulated during the differentiation stage in Nrf2-knockdown 3T3-L1 cells. Moreover, the fibroblast growth factor 21 (FGF21) and manganese superoxide dismutase (MnSOD) were markedly downregulated in Nrf2-knockdown 3T3-L1 cells. Taken together, the results of the present study suggest that the suppression of Nrf2 attenuates adipogenesis and decreases FGF21 expression through PPARγ in 3T3-L1 cells.


Assuntos
Adipogenia/efeitos dos fármacos , Fatores de Crescimento de Fibroblastos/metabolismo , Inativação Gênica , Fator 2 Relacionado a NF-E2/genética , PPAR gama/metabolismo , Células 3T3-L1 , Animais , Regulação para Baixo/efeitos dos fármacos , Camundongos , Estresse Oxidativo , PPAR gama/genética , Superóxido Dismutase/efeitos dos fármacos
15.
Nano Res ; 11(10): 5281-5309, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31007865

RESUMO

As an attractive alternative to plasmid DNA, messenger RNA (mRNA) has recently emerged as a promising class of nucleic acid therapeutics for biomedical applications. Advances in addressing the inherent shortcomings of mRNA and in the development of nanoparticle-based delivery systems have prompted the development and clinical translation of mRNA-based medicines. In this review, we discuss the chemical modification strategies of mRNA to improve its stability, minimize immune responses, and enhance translational efficacy. We also highlight recent progress in nanoparticle-based mRNA delivery. Considerable attention is given to the increasingly widespread applications of mRNA nanomedicine in the biomedical fields of vaccination, protein-replacement therapy, gene editing, and cellular reprogramming and engineering.

16.
Nat Biomed Eng ; 2(11): 850-864, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-31015614

RESUMO

Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a well-characterized tumour-suppressor gene that is lost or mutated in about half of metastatic castration-resistant prostate cancers and in many other human cancers. The restoration of functional PTEN as a treatment for prostate cancer has, however, proven difficult. Here, we show that PTEN messenger RNA (mRNA) can be reintroduced into PTEN-null prostate cancer cells in vitro and in vivo via its encapsulation in polymer-lipid hybrid nanoparticles coated with a polyethylene glycol shell. The nanoparticles are stable in serum, elicit low toxicity and enable high PTEN mRNA transfection in prostate cancer cells. Moreover, significant inhibition of tumour growth is achieved when delivered systemically in multiple mouse models of prostate cancer. We also show that the restoration of PTEN function in PTEN-null prostate cancer cells inhibits the phosphatidylinositol 3-kinase (PI3K)-AKT pathway and enhances apoptosis. Our findings provide proof-of-principle evidence of the restoration of mRNA-based tumour suppression in vivo.


Assuntos
Nanopartículas/química , PTEN Fosfo-Hidrolase/genética , RNA Mensageiro/metabolismo , Animais , Apoptose , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Lipídeos/química , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , PTEN Fosfo-Hidrolase/deficiência , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Polietilenoglicóis/química , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/química , Transdução de Sinais , Distribuição Tecidual , Transfecção/métodos
17.
Nat Biomed Eng ; 2(12): 968, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31015729

RESUMO

The authors wish to add the following sentence into the 'Competing interests' section of this Article: "P.W.K. has investment interest in Context Therapeutics LLC, DRGT, Placon, Seer Biosciences and Tarveda Therapeutics, is a company board member for Context Therapeutics LLC, is a consultant and scientific advisory board member for BIND Biosciences, Inc., BN Immunotherapeutics, DRGT, GE Healthcare, Janssen, Metamark, New England Research Institutes, Inc., OncoCellMDX, Progenity, Sanofi, Seer Biosciences, Tarveda Therapeutics and Thermo Fisher, and serves on data safety monitoring boards for Genentech/Roche and Merck." This has now been included.

18.
Nat Commun ; 8(1): 1087, 2017 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-29057873

RESUMO

Obesity is closely associated with increased adipose tissue macrophages (ATMs), which contribute to systemic insulin resistance and altered lipid metabolism by creating a pro-inflammatory environment. Very low-density lipoprotein receptor (VLDLR) is involved in lipoprotein uptake and storage. However, whether lipid uptake via VLDLR in macrophages affects obesity-induced inflammatory responses and insulin resistance is not well understood. Here we show that elevated VLDLR expression in ATMs promotes adipose tissue inflammation and glucose intolerance in obese mice. In macrophages, VLDL treatment upregulates intracellular levels of C16:0 ceramides in a VLDLR-dependent manner, which potentiates pro-inflammatory responses and promotes M1-like macrophage polarization. Adoptive transfer of VLDLR knockout bone marrow to wild-type mice relieves adipose tissue inflammation and improves insulin resistance in diet-induced obese mice. These findings suggest that increased VLDL-VLDLR signaling in ATMs aggravates adipose tissue inflammation and insulin resistance in obesity.


Assuntos
Tecido Adiposo/metabolismo , Resistência à Insulina/imunologia , Macrófagos/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Receptores de LDL/metabolismo , Tecido Adiposo/imunologia , Animais , Western Blotting , Citometria de Fluxo , Imuno-Histoquímica , Inflamação/imunologia , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
19.
Endocrinol Metab (Seoul) ; 32(3): 389-395, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28956370

RESUMO

BACKGROUND: Bone strength is impaired in patients with type 2 diabetes mellitus despite an increase in bone mineral density (BMD). Thiazolidinedione (TZD), a peroxisome proliferator activated receptor γ agonist, promotes adipogenesis, and suppresses osteoblastogenesis. Therefore, its use is associated with an increased risk of fracture. The aim of this study was to examine the in vitro and in vivo effects of lobeglitazone, a new TZD, on bone. METHODS: MC3T3E1 and C3H10T1/2 cells were cultured in osteogenic medium and exposed to lobeglitazone (0.1 or 1 µM), rosiglitazone (0.4 µM), or pioglitazone (1 µM) for 10 to 14 days. Alkaline phosphatase (ALP) activity, Alizarin red staining, and osteoblast marker gene expression were analyzed. For in vivo experiments, 6-month-old C57BL/6 mice were treated with vehicle, one of two doses of lobeglitazone, rosiglitazone, or pioglitazone. BMD was assessed using a PIXImus2 instrument at the baseline and after 12 weeks of treatment. RESULTS: As expected, in vitro experiments showed that ALP activity was suppressed and the mRNA expression of osteoblast marker genes RUNX2 (runt-related transcription factor 2) and osteocalcin was significantly attenuated after rosiglitazone treatment. By contrast, lobeglitazone at either dose did not inhibit these variables. Rosiglitazone-treated mice showed significantly accelerated bone loss for the whole bone and femur, but BMD did not differ significantly between the lobeglitazone-treated and vehicle-treated mice. CONCLUSION: These findings suggest that lobeglitazone has no detrimental effects on osteoblast biology and might not induce side effects in the skeletal system.

20.
Cardiovasc Res ; 113(2): 183-194, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27702762

RESUMO

AIMS: Enhancement of glucagon-like peptide-1 (GLP-1) reduces glucose levels and preserves pancreatic ß-cell function, but its effect against restenosis is unknown. METHODS AND RESULTS: We investigated the effect of subcutaneous injection of exenatide or local delivery of a recombinant adenovirus expressing GLP-1 (rAd-GLP-1) into carotid artery, in reducing the occurrence of restenosis following balloon injury. As a control, we inserted ß-galactosidase cDNA in the same vector (rAd-ßGAL). Otsuka Long-Evans Tokushima rats were assigned to three groups (n = 12 each): (1) normal saline plus rAd-ßGAL delivery (NS + rAd-ßGAL), (2) exenatide plus rAd-ßGAL delivery (Exenatide + rAd-ßGAL), and (3) normal saline plus rAd-GLP-1 delivery (NS + rAd-GLP-1). Normal saline or exenatide were administered subcutaneously from 1 week before to 2 weeks after carotid injury. After 3 weeks, the NS + rAd-ßGAL group showed the highest intima-media ratio (IMR; 3.73 ± 0.90), the exenatide + rAd-ßGAL treatment was the next highest (2.80 ± 0.51), and NS + rAd-GLP-1 treatment showed the lowest IMR (1.58 ± 0.48, P < 0.05 vs. others). The proliferation and migration of vascular smooth muscle cells and monocyte adhesion were decreased significantly after rAd-GLP-1 treatment, showing the same overall patterns as the IMR. In injured vessels, the apoptosis was greater and MMP2 expression was less in the NS + rAd-GLP-1 than in the exenatide or rAd-ßGAL groups. In vitro expressions of matrix metalloproteinases-2 and monocyte chemoattractant protein-1 and nuclear factor-kappa-B-p65 translocation were decreased more in the NS + rAd-GLP-1 group than in the other two groups (all P < 0.05). CONCLUSION: Direct GLP-1 overexpression showed better protection against restenosis after balloon injury via suppression of vascular smooth muscle cell migration, increased apoptosis, and decreased inflammatory processes than systemic exenatide treatment. This has potential therapeutic implications for treating macrovascular complications in diabetes.


Assuntos
Adenoviridae/genética , Lesões das Artérias Carótidas/terapia , Artéria Carótida Externa/metabolismo , Estenose Coronária/prevenção & controle , Diabetes Mellitus/terapia , Técnicas de Transferência de Genes , Terapia Genética , Vetores Genéticos , Peptídeo 1 Semelhante ao Glucagon/biossíntese , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Neointima , Animais , Apoptose , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/metabolismo , Lesões das Artérias Carótidas/patologia , Artéria Carótida Externa/patologia , Adesão Celular , Movimento Celular , Proliferação de Células , Células Cultivadas , Estenose Coronária/genética , Estenose Coronária/metabolismo , Estenose Coronária/patologia , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Modelos Animais de Doenças , Exenatida , Peptídeo 1 Semelhante ao Glucagon/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Hipoglicemiantes/administração & dosagem , Incretinas/administração & dosagem , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Peptídeos/administração & dosagem , Ratos Endogâmicos OLETF , Fator de Transcrição RelA/metabolismo , Transfecção , Peçonhas/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...