Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes Genomics ; 46(4): 451-459, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436907

RESUMO

BACKGROUND: The Arabidopsis DA1 gene is a key player in the regulation of organ and seed development. To extend our understanding of its functional counterparts in rice, this study investigates the roles of orthologous genes, namely DA1, HDR3, HDR3.1, and the DA2 ortholog GW2, through the analysis of T-DNA insertion mutants. OBJECTIVE: The aim of this research is to elucidate the impact of T-DNA insertions in DA1, HDR3, HDR3.1, and GW2 on agronomic traits in rice. By evaluating homozygous plants, we specifically focus on key parameters such as plant height, tiller number, days to heading, and grain size. METHODS: T-DNA insertion locations were validated using PCR, and subsequent analyses were conducted on homozygous plants. Agronomic traits, including plant height, tiller number, days to heading, and grain size, were assessed. Additionally, leaf senescence assays were performed under dark incubation conditions to gauge the impact of T-DNA insertions on this physiological aspect. RESULTS: The study revealed distinctive phenotypic outcomes associated with T-DNA insertions in HDR3, HDR3.1, GW2, and DA1. Specifically, HDR3 and HDR3.1 mutants exhibited significantly reduced plant height and smaller grain size, while GW2 and DA1 mutants displayed a notable increase in both plant height and grain size compared to the wild type variety Dongjin. Leaf senescence assays further indicated delayed leaf senescence in hdr3.1 mutants, contrasting with slightly earlier leaf senescence observed in hdr3 mutants under dark incubation. CONCLUSIONS: The findings underscore the pivotal roles of DA1 orthologous genes in rice, shedding light on their significance in regulating plant growth and development. The observed phenotypic variations highlight the potential of these genes as targets for crop improvement strategies, offering insights that could contribute to the enhancement of agronomic traits in rice and potentially other crops.


Assuntos
Arabidopsis , Oryza , Arabidopsis/genética , Oryza/genética , Folhas de Planta/genética , DNA Bacteriano/genética , Grão Comestível/genética
2.
Mol Med Rep ; 17(2): 2665-2672, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29207134

RESUMO

Chemotherapy frequently causes anorexia in cancer patients, which has been associated with poor disease prognosis. Several therapeutic strategies for the treatment of chemotherapy­induced anorexia are available; however, their adverse effects limit their clinical use. Herbal medicines have a long history of use for the treatment of various diseases, including cancer, and recent research has demonstrated their safety and efficacy. In the present study, combinations of herbal medicines were designed based on traditional Korean medicine, and their effects were investigated on chemotherapy­induced anorexia. Herbal mixtures were extracted, composed of Atractylodes japonica, Angelica gigas, Astragalus membranaceus, Lonicera japonica Thunb., Taraxacum platycarpum H. Dahlstedt and Prunella vulgaris var. asiatica (Nakai) Hara. The mixtures were termed LCBP­Anocure­16001­3 (LA16001, LA16002, LA16003). A cisplatin­induced anorexic mouse model was used to evaluate the putative effects of the extracts on chemotherapy­induced anorexia. Treatment with LA16001 was revealed to prevent body weight loss, and all three extracts were demonstrated to improve food intake. When the molecular mechanisms underlying the orexigenic effects of LA16001 were investigated, altered expression levels of ghrelin, leptin and interleukin­6 were revealed. Furthermore, LA16001 was reported to induce phosphorylation of Janus kinase 1 and signal transducer and activator of transcription 3. In addition, LA16001 administration increased the number of white blood cells and neutrophils. These results suggested that the herbal formula LA16001 may be able to prevent chemotherapy­induced anorexia and may have potential as a novel therapeutic strategy for the adjuvant treatment of patients with cancer.


Assuntos
Anorexia/etiologia , Antineoplásicos/efeitos adversos , Cisplatino/efeitos adversos , Extratos Vegetais/farmacologia , Animais , Anorexia/tratamento farmacológico , Anorexia/metabolismo , Apetite/efeitos dos fármacos , Modelos Animais de Doenças , Ingestão de Alimentos/efeitos dos fármacos , Medicina Herbária , Hormônios/metabolismo , Humanos , Janus Quinase 1/metabolismo , Masculino , Camundongos , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
Int J Mol Med ; 41(1): 373-380, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29115450

RESUMO

Tumor necrosis factor­α­mediated (TNF­α) epithelial­mesenchymal transition (EMT) is associated with distant metastasis in patients with colorectal cancer with poor prognosis. Although traditional herbal medicines have long been used to treat colorectal cancer, the incidence and mortality in patients with colorectal cancer has continued to increase. Danggui­Sayuk­Ga­Osuyu­Saenggang­Tang (DSGOST) has long been used for treatment of chills, while few studies have reported its anticancer effect. This study aimed to demonstrate the inhibitory effect of DSGOST on TNF­α­mediated invasion and migration of colorectal cancer HCT116 cell lines. MTT was used to measure cell viability. Wound healing and Τranswell invasion assay were used to detect migration and invasion of cells, respectively. The intracellular localization of proteins of interest was assessed by immunocytochemistry. Western blotting was performed to determine the expression level of various proteins. A non­toxic dose of DSGOST (50 µg/ml) on HCT116 cells was determined by MTT assay. Furthermore, DSGOST prevented the TNF­α­induced invasive phenotype in HCT116 cells. DSGOST inhibition of the invasive phenotype was also associated with increased expression of EMT markers. Furthermore, DSGOST treatment blocked TNF­α­induced migration and invasion of HCT116 cells. In addition, DSGOST treatment inhibited TNF­α­mediated nuclear translocation of Snail. DSGOST treatment also downregulated TNF­α­induced phosphorylation of AKT and glycogen synthase kinase­3ß. Therefore, the findings of the current study suggest that DSGOST exhibits anti­migration and anti­invasion effects in TNF­α­treated HCT116 human colorectal cells.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Medicamentos de Ervas Chinesas/administração & dosagem , Fator de Necrose Tumoral alfa/genética , Movimento Celular/efeitos dos fármacos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Medicamentos de Ervas Chinesas/química , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/genética , Células HCT116 , Humanos , Invasividade Neoplásica/genética , Proteínas Proto-Oncogênicas c-akt/genética , Fator de Necrose Tumoral alfa/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...