Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Korean J Chem Eng ; : 1-8, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37363782

RESUMO

Municipal solid waste (MSW) management is an essential municipal service. Proper waste treatment is an important part of the waste management. Thermocatalytic waste upcycling has recently gained great interest and attention as a method to extract value from waste, which potentially substitutes traditional waste treatment methods. This study aims at demonstrating the potential for thermocatalytic waste upcycling using spent disposable wipes as an MSW surrogate. Two different Ni/Al2O3 catalysts were prepared, treated under two different atmospheres (N2 and CO2). The catalyst treated in N2 (Ni/Al2O3-N2) exhibited a higher surface metallic Ni site than the catalyst treated in CO2 (Ni/Al2O3-CO2). The use of the Ni/Al2O3-N2 increased the yield of gas pyrolysate and decreased the yield of byproduct (e.g., wax), compared with no catalyst and the Ni/Al2O3-CO2. In particular, the Ni/Al2O3-N2 catalyst affected the generation of gaseous hydrogen (H2) by increasing the H2 yield by up to 102% in comparison with the other thermocatalytic systems. The highest H2 yield obtained with the Ni/Al2O3-N2 was attributed to the most surface metallic Ni sites. However, the Ni/Al2O3-N2 catalyst led to char having a lower higher heating value than the other catalysts due to its lowest carbon content. The results indicated that the reduction treatment environment for Ni/Al2O3 catalyst influences thermocatalytic conversion product yields of spent disposable wipes, including enhanced H2 production. Electronic Supplementary Material: Supplementary material is available in the online version of this article at 10.1007/s11814-023-1461-8.

2.
Sci Total Environ ; 859(Pt 2): 160393, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36423842

RESUMO

Rapidly changing fashion trends have generated tremendous amounts of textile waste globally. Textile waste is composed of a variety of substances (natural, synthetic, organic, and inorganic fibers). The inhomogeneity and complex nature of textile waste makes recycling economically challenging. Pyrolysis is a thermochemical process that transforms waste feedstocks of an inhomogeneous and complex nature into value added products (i.e., waste upcycling). This article provides a systematic review of the currently available and investigated pyrolysis processes to upcycle textile waste (e.g., material and energy recovery). The challenges in the pyrolysis process of textile waste are discussed, and relevant future research needs are recommended. Despite these challenges, pyrolysis will be an effective end-of-life option for textile waste if continuous research and development activities are conducted.


Assuntos
Reciclagem , Têxteis , Pirólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...