Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(13)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37447934

RESUMO

In this paper, a capacitively-fed, ultra-wideband (UWB), and low-profile monocone antenna is proposed for vehicle-to-everything (V2X) applications. The proposed antenna consists of a monocone design with an inner set of vias. Additionally, an outer ring is added with a small gap from the monocone and shorted with six folded wires of different lengths to extend the operating band. The proposed antenna covers the frequency range from 0.75 GHz to 7.6 GHz and has a 164% fractional bandwidth, with a gain value varying between 2 and 10 dBi. The dimensions of the antenna are 0.37λL × 0.37λL × 0.067λL. The antenna was fabricated using a 3D printer with low-cost polylactic acid plastic (PLA) material and then sprayed with aerosol copper nanoparticles. The efficiency was approximately 90% throughout the frequency bands of interest. Finally, the proposed antenna was installed on a vehicle and tested with an OBU (onboard unit) and a RSU (roadside unit) in the field. The results show a longer wireless communication range for V2X applications.


Assuntos
Comunicação , Nanopartículas , Cobre , Plásticos
2.
Healthcare (Basel) ; 10(5)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35627908

RESUMO

Although data-based healthcare innovation has been spotlighted in South Korea in recent years, previous studies have made little effort to systematically predict various possible future outcomes in the data-driven healthcare economy. This study investigated possible future such scenarios in South Korea by conducting a general morphological analysis (GMA). Seven key factors were identified that will drive the data-driven healthcare economy: the acceptability of data utilization, the level of data literacy, the status of healthcare data regulation, the healthcare data system, medical costs, the convergence of ICT and biotechnology, and the utilization of data in medical services. The main findings are as follows: Four possible scenarios for the data-driven healthcare economy in South Korea were identified. The first scenario suggested mostly optimistic prospects and close associations between factorial values on the various spectra. The second scenario was similar to the first one, except for medical costs. However, the third scenario contrasted with the first, as it entailed relatively pessimistic factorial values. Finally, most of the elements of the current healthcare status quo were maintained in the fourth scenario. This study makes not only an academic contribution, but also has policy implications based on the four scenarios.

3.
IEEE Trans Biomed Circuits Syst ; 15(5): 1017-1026, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34570708

RESUMO

In this paper, a microwave fluidic glucose sensor based on a microwave resonator coupled with an interferometric system is proposed for sensitivity enhancement. The proposed glucose sensor consists of two parts: a sensing part and a sensitivity enhancement part. The former is composed of a rectangular complementary split ring resonator (CSRR), and the latter is composed of a variable attenuator, a variable phase shifter, two hybrid couplers, and an RF power detector. Because the variation in the electrical properties, which is utilized in the microwave detection scheme, with glucose concentration over the possible concentration range in the human body is very small, improvement of the sensitivity is critical for practical use. Thus, the effective sensing area of the rectangular CSRR is determined by considering the electric field distribution. In addition, magnitude and phase conditions for the effective sensitivity enhancement are derived from a mathematical analysis of the proposed interferometric system. In the present experiment, aimed at demonstrating the detection performance as a function of the glucose concentration in the range of 0 mg/dL to 400 mg/dL, the sensitivity is significantly improved by 48 times by applying the derived conditions for effective sensitivity enhancement. Furthermore, the accuracy of the proposed glucose sensor for glucose concentrations at a step of 100 mg/dL is verified by the Clarke error grid. Based on the measurement results, the proposed glucose sensor is demonstrated to be applicable to noninvasive and continuous monitoring in practical environments.


Assuntos
Técnicas Biossensoriais , Micro-Ondas , Eletricidade , Glucose , Humanos
4.
Sensors (Basel) ; 21(5)2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33800771

RESUMO

This review paper focuses on radio-frequency (RF) biosensors for real-time and continuous glucose sensing reported in the literature, including our recent research. Diverse versions of glucose biosensors based on RF devices and circuits are briefly introduced, and their performances are compared. In addition, the limitations of the developed RF glucose biosensors are discussed. Finally, we present perspectives on state-of-art RF biosensing chips for point-of-care diagnosis and describe their future challenges.


Assuntos
Técnicas Biossensoriais , Glucose , Sistemas Automatizados de Assistência Junto ao Leito , Ondas de Rádio
5.
Materials (Basel) ; 13(12)2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32630590

RESUMO

In this review, the advances in radio-frequency (RF) /microwave chemical gas sensors using conducting polymers are discussed. First, the introduction of various conducting polymers is described. Only polyaniline (PANi), polypyrrole (PPy) and poly(3,4-ethylenedioxythiophene) (PEDOT), which are mainly used for gas sensors in RF/microwave region, are focused in this review. Sensing mechanism of the three conducting polymers are presented. And the RF/microwave characteristics and RF/microwave applications of the three conducting polymers are discussed. Moreover, the gas sensors using conducting polymers in RF/microwave frequencies are described. Finally, the the challenges and the prospects of the next generation of the RF/microwave based chemical sensors for wireless applications are proposed.

6.
Materials (Basel) ; 13(7)2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32283760

RESUMO

This study aims to investigate the microwave properties of coplanar waveguide (CPW)-based poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) conducting polymer line in an ethanol gas atmosphere, with the frequency range of 0.5-2 GHz. For an ethanol-exposed PEDOT:PSS line (test sample), the transmission coefficient (S21) decreased immediately; moreover, the microwave effective conductivity (σm/w) decreased simultaneously, compared with the ethanol-free PEDOT:PSS line (reference sample). The immediate variations in ΔS21 ( = S21,ethanol - S21,free) and Δσm/w ( = σm/w,ethanol - σm/w,free) were approximately 10.2 dB and 2.7 × 104 S/m, respectively. Furthermore, in the analysis of the circuit model of the PEDOT:PSS line, the characteristic impedance and distributed elements, i.e., resistance (R) and inductance (L) per length, of the test sample increased, compared with the reference sample. However, upon stopping the exposure to ethanol gas, the microwave properties of the test sample instantaneously recovered to those of the reference sample. According to these critical observations, we could confirm that the coplanar waveguide with a PEDOT:PSS line shows a significant difference in the diverse microwave properties, through rapid response to the ethanol gas at room temperature.

7.
IEEE Trans Biomed Circuits Syst ; 13(3): 493-502, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30946676

RESUMO

In this paper, a radio frequency vital sign sensor based on double voltage-controlled oscillators (VCOs) combined with a switchable phase-locked loop (PLL) is proposed for a noncontact remote vital sign sensing system. Our sensing system primarily detects the periodic movements of the human lungs and the hearts via the impedance variation of the resonator. With a change in impedance, both the VCO oscillation frequency and the PLL feedback voltage also change. Thus, by tracking the feedback voltage of the PLL, breath and heart rate signals can be acquired simultaneously. However, as the distance between the body and the sensor varies, there are certain points with minimal sensitivity, making it is quite difficult to detect vital signs. These points, called impedance null points, periodically occur at distances proportional to the wavelength. To overcome the impedance null point problem, two resonators operating at different frequencies, 2.40 and 2.76 GHz, are employed as receiving components. In an experiment to investigate the sensing performance as a function of distance, the measurement distance was accurately controlled by a linear actuator. Furthermore, to evaluate the sensing performance in a real environment, experiments were carried out with a male and a female subject in a static vehicle. To demonstrate the real-time vital sign monitoring capability, spectrograms were utilized, and the accuracy was assessed relative to reference sensors. Based on the results, it is demonstrated that the proposed remote sensor can reliably detect vital signs in a real vehicle environment.


Assuntos
Condução de Veículo , Desenho de Equipamento , Frequência Cardíaca , Mecânica Respiratória , Dispositivos Eletrônicos Vestíveis , Feminino , Humanos , Masculino
8.
Materials (Basel) ; 12(6)2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30901965

RESUMO

In this paper, the advances in radio-frequency (RF)/microwave biosensors based on graphene nanomaterials including graphene, graphene oxide (GO), and reduced graphene oxide (rGO) are reviewed. From a few frontier studies, recently developed graphene nanomaterials-based RF/microwave biosensors are examined in-depth and discussed. Finally, the prospects and challenges of the next-generation RF/microwave biosensors for wireless biomedical applications are proposed.

9.
Sensors (Basel) ; 18(11)2018 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-30423976

RESUMO

In this paper, a fluidic glucose sensor that is based on a complementary split-ring resonator (CSRR) is proposed for the microwave frequency region. The detection of glucose with different concentrations from 0 mg/dL to 400 mg/dL in a non-invasive manner is possible by introducing a fluidic system. The glucose concentration can be continuously monitored by tracking the transmission coefficient S 21 as a sensing parameter. The variation tendency in S 21 by the glucose concentration is analyzed with equivalent circuit model. In addition, to eradicate the systematic error due to temperature variation, the sensor is tested in two temperature conditions: the constant temperature condition and the time-dependent varying temperature condition. For the varying temperature condition, the temperature correction function was derived between the temperature and the variation in S 21 for DI water. By applying the fitting function to glucose solution, the subsidiary results due to temperature can be completely eliminated. As a result, the S 21 varies by 0.03 dB as the glucose concentration increases from 0 mg/dL to 400 mg/dL.

10.
Sci Rep ; 8(1): 439, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29323214

RESUMO

A real-time humidity sensor based on a microwave resonator coupled with a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) conducting polymer (CP) film is proposed in this paper. The resonator is patterned on a printed circuit board and is excited by electromagnetic field coupling. To enhance the sensitivity of the sensor, the CP film is located in the area with the strongest electric field in the resonator. To investigate the performance, the proposed sensor is placed alongside a reference sensor in a humidity chamber, and humidity is injected at room temperature. The experimental results indicate that the electrical properties of the resonator with the CP film, such as the transmission coefficient (S 21) and resonance frequency, change with the relative humidity (RH). Specifically, as the RH changes from 5% to 80%, S 21 and the resonance frequency change simultaneously. Moreover, the proposed sensor exhibits great repeatability in the middle of the sensing range, which is from 40% to 60% RH. Consequently, our resonator coupled with the CP film can be used as a real-time humidity-sensing device in the microwave range, where various radio-frequency devices are in use.

11.
Rev Sci Instrum ; 87(9): 094706, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27782576

RESUMO

In this paper, we demonstrate the sensing feasibility of the proposed high-Q resonator using a phosphate-buffered saline droplet at microwave frequencies. In the experimental results, the resonant frequency, signal level, and Q-factor of the S21-parameter with and without a 1-µl droplet were changed to about 230 MHz, 32 dB, and 1500, respectively. The resonator system was found to be suitable for droplet sensing with a small volume due to its small and compact scheme. This resonator system is expected to play an important role in droplet sensing with different dielectric constants.

12.
Biosens Bioelectron ; 61: 448-59, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24934746

RESUMO

This article reviews radio-frequency (RF) biosensors based on passive and/or active devices and circuits. In particular, we focus on RF biosensors designed for detection of various biomolecules such as biotin-streptavidin, DNA hybridization, IgG, and glucose. The performance of these biosensors has been enhanced by the introduction of various sensing schemes with diverse nanomaterials (e.g., carbon nanotubes, graphene oxide, magnetic and gold nanoparticles, etc.). In addition, the RF biosensing platforms that can be associated with an RF active system are discussed. Finally, the challenges of RF biosensors are presented and suggestions are made for their future direction and prospects.


Assuntos
Técnicas Biossensoriais/instrumentação , Animais , Técnicas Biossensoriais/métodos , Biotina/análise , Desenho de Equipamento , Glucose/análise , Humanos , Imunoglobulina G/análise , Hibridização de Ácido Nucleico/métodos , Ondas de Rádio , Estreptavidina/análise , Transdutores
13.
IEEE Trans Biomed Circuits Syst ; 8(4): 584-93, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24235311

RESUMO

In this paper, a noncontact proximity vital sign sensor, using a phase locked loop (PLL) incorporated with voltage controlled oscillator (VCO) built-in planar type circular resonator, is proposed to enhance sensitivity in severe environments. The planar type circular resonator acts as a series feedback element of the VCO as well as a near-field receiving antenna. The frequency deviation of the VCO related to the body proximity effect ranges from 0.07 MHz/mm to 1.8 MHz/mm (6.8 mV/mm to 205 mV/mm in sensitivity) up to a distance of 50 mm, while the amount of VCO drift is about 21 MHz in the condition of 60 (°)C temperature range and discrete component tolerance of ± 5%. Total frequency variation occurs in the capture range of the PLL which is 60 MHz. Thus, its loop control voltage converts the amount of frequency deviation into a difference of direct current (DC) voltage, which is utilized to extract vital signs regardless of the ambient temperature. The experimental results reveal that the proposed sensor placed 50 mm away from a subject can reliably detect respiration and heartbeat signals without the ambiguity of harmonic signals caused by respiration signal at an operating frequency of 2.4 GHz.


Assuntos
Testes Respiratórios/instrumentação , Desenho de Equipamento , Frequência Cardíaca/fisiologia , Humanos , Processamento de Sinais Assistido por Computador
14.
Biosens Bioelectron ; 50: 362-7, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23891799

RESUMO

In this paper, we propose a radio-frequency (RF) biosensor platform based on oscillation frequency deviation at 2.4 GHz. Its feasibility is experimentally demonstrated with the well-known biomolecular binding systems such as biotin-streptavidin and deoxyribonucleic acid (DNA) hybridization. For a basic principle of our biosensing system, the impedance of a resonator with the biomolecular immobilization is at first varied so that the corresponding change results in frequency change of an oscillator. Especially, to enhance the sensitivity of the proposed system, a surface acoustic wave (SAW) filter having a high-Q factor (~2000) is utilized. From the resulting component, even a small change of oscillation frequency can be transformed into a large output amplitude variation. According to the experimental results, it is found that our system shows the low detectable limit (~1 ng/ml) and fast response time (~real-time) for different target biomolecules, i.e. streptavidin and complementary DNA (cDNA). As a result, we find that our device is an effective biosensing system that can be used for a label-free and real-time measurement of the biomolecular binding events.


Assuntos
Técnicas Biossensoriais/instrumentação , DNA Complementar/análise , Estreptavidina/análise , Desenho de Equipamento , Limite de Detecção , Ondas de Rádio , Som
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...