Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 10(1): 687-695, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29235851

RESUMO

A major challenge of lithium-oxygen batteries is to develop a stable electrolyte not only to suppress solvent evaporation and lithium dendrite growth, but also to resist the attack by superoxide anion radical formed at the positive electrode. The present study demonstrates the enhancement of cycling stability by addressing the above challenges through the use of three-dimensional semi-interpenetrating polymer network (semi-IPN) composite gel polymer electrolyte when fabricating the lithium-oxygen cell. The semi-IPN composite gel electrolyte synthesized from poly(methyl methacrylate), divinylbenzene, and vinyl-functionalized silica effectively encapsulated electrolyte solution and exhibited stable interfacial characteristics toward lithium electrodes. Matrix polymers in the semi-IPN composite gel electrolyte also retained high stability without any decomposition by superoxide anion radicals during cycling. The lithium-oxygen cell employing semi-IPN composite gel polymer electrolyte was shown to cycle with good capacity retention at 0.25 mAh cm-2. The semi-IPN composite gel electrolyte is one of the promising electrolytes for the stable lithium-oxygen battery with high energy density.

2.
Phys Chem Chem Phys ; 15(46): 20262-71, 2013 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-24166701

RESUMO

We employed graphene flakes as an air-cathode material for Li-O2 batteries and investigated their electrochemical properties in the dimethyl ether electrolyte. Graphene flakes were prepared by microwave-assisted reduction of graphene oxide, and their electrochemical properties were compared with those of Ketjen Black and carbon nanotubes. The catalytic effect of the prepared graphene flake-air cathode was demonstrated using cyclic voltammetry and discharge-charge testing performed under a limited discharge capacity. The catalytic effect of graphene flakes was also supported by morphological and spectroscopic analysis of the discharge-charge products formed on the graphene surface. Scanning electron microscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy revealed that Li2O2, Li2O, and Li2CO3 were the main discharge products on all carbon-air cathode surfaces. Raman spectroscopy revealed that LiRCO3 was additionally formed on Ketjen Black and carbon nanotubes during the first discharge; however, its formation was not observed on the graphene flakes. The catalytic effect of the graphene flakes and the absence of LiRCO3 in the discharge product could explain the higher Coulombic efficiency in the discharge-charge tests.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...