Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 21(24): 10469-10477, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34881903

RESUMO

Stacking two-dimensional van der Waals (vdW) materials rotated with respect to each other show versatility for studying exotic quantum phenomena. In particular, anisotropic layered materials have great potential for such twistronics applications, providing high tunability. Here, we report anisotropic superconducting order parameters in twisted Bi2Sr2CaCu2O8+x (Bi-2212) vdW junctions with an atomically clean vdW interface, achieved using the microcleave-and-stack technique. The vdW junctions with twist angles of 0° and 90° showed the maximum Josephson coupling, comparable to that of intrinsic Josephson junctions. As the twist angle approaches 45°, Josephson coupling is suppressed, and eventually disappears at 45°. The observed twist angle dependence of the Josephson coupling can be explained quantitatively by theoretical calculation with the d-wave superconducting order parameter of Bi-2212 and finite tunneling incoherence of the junction. Our results revealed the anisotropic nature of Bi-2212 and provided a novel fabrication technique for vdW-based twistronics platforms compatible with air-sensitive vdW materials.

2.
Nano Lett ; 19(12): 9002-9007, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31738553

RESUMO

Crossed Andreev reflection (CAR) is a nonlocal process that converts an incoming electron (hole) from one normal electrode to an out-going hole (electron) in another normal electrode through a superconductor (SC). CAR corresponds to the inverse process of Cooper pair splitting, which generates a quantum-entangled electron pair with spatial separation. Here, we fabricated vertically stacked double bilayer graphene (BLG) connected via a superconducting electrode and achieved a spacing between BLG sheets of ∼14 nm, which is far shorter than the superconducting coherence length. We confirm the highly efficient CAR effect by observing strong negative differential resistance in a nonlocal configuration and demonstrate that the competing processes against the CAR can be effectively suppressed by separately tuning the chemical potential of each BLG. The dependence of nonlocal signals on bias voltage, temperature, and chemical potential is consistent with the predicted CAR process. Our results provide a new pathway to a novel SC-based quantum entangler with the in situ tunability of the correlated-pair-splitting efficiency.

3.
Nano Lett ; 18(9): 5961-5966, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30110547

RESUMO

We investigated the quantization of the conductance of quasi-one-dimensional (quasi-1D) constrictions in high-mobility bilayer graphene (BLG) with different geometrical aspect ratios. Ultrashort (a few tens of nanometers long) constrictions were fabricated by applying an under-cut etching technique. Conductance was quantized in steps of ∼4 e2/ h (∼2 e2/ h) in devices with aspect ratios smaller (larger) than 1. We argue that scattering at the edges of a quasi-1D BLG constriction limits the intervalley scattering length, which causes valley-preserved (valley-broken) quantum transport in devices with aspect ratios smaller (larger) than 1. The subband energy levels, analyzed in terms of the bias-voltage and temperature dependences of the quantized conductance, indicated that they corresponded well to the effective channel width of a physically defined conducting channel with a hard-wall confining potential. Our study in ultrashort high-mobility BLG nano constrictions with physically tailored edges clearly confirms that physical edges are the major source of intervalley scattering in graphene in the ballistic limit.

4.
Phys Rev Lett ; 120(7): 077701, 2018 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-29542963

RESUMO

We report on short ballistic (SB) Josephson coupling in junctions embedded in a planar heterostructure of graphene. Ballistic Josephson coupling is confirmed by the Fabry-Perot-type interference of the junction critical current I_{c}. The product of I_{c} and the normal-state junction resistance R_{N}, normalized by the zero-temperature gap energy Δ_{0} of the superconducting electrodes, turns out to be exceptionally large close to 2, an indication of strong Josephson coupling in the SB junction limit. However, I_{c} shows a temperature dependence that is inconsistent with the conventional short-junction-like behavior based on the standard Kulik-Omel'yanchuk prediction. We argue that this feature stems from the effects of inhomogeneous carrier doping in graphene near the superconducting contacts, although the junction is in fact in the short-junction limit.

5.
Rep Prog Phys ; 81(5): 056502, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29451135

RESUMO

This review discusses the electronic properties and the prospective research directions of superconductor-graphene heterostructures. The basic electronic properties of graphene are introduced to highlight the unique possibility of combining two seemingly unrelated physics, superconductivity and relativity. We then focus on graphene-based Josephson junctions, one of the most versatile superconducting quantum devices. The various theoretical methods that have been developed to describe graphene Josephson junctions are examined, together with their advantages and limitations, followed by a discussion on the advances in device fabrication and the relevant length scales. The phase-sensitive properties and phase-particle dynamics of graphene Josephson junctions are examined to provide an understanding of the underlying mechanisms of Josephson coupling via graphene. Thereafter, microscopic transport of correlated quasiparticles produced by Andreev reflections at superconducting interfaces and their phase-coherent behaviors are discussed. Quantum phase transitions studied with graphene as an electrostatically tunable 2D platform are reviewed. The interplay between proximity-induced superconductivity and the quantum-Hall phase is discussed as a possible route to study topological superconductivity and non-Abelian physics. Finally, a brief summary on the prospective future research directions is given.

6.
Nano Lett ; 17(10): 6125-6130, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28952735

RESUMO

A layered two-dimensional superconducting material 2H-NbSe2 is used to build a van der Waals heterostructure, where a proximity-coupled superconducting order can be induced in the interfacing materials. Vertically stacked NbSe2-graphene-NbSe2 is fabricated using van der Waals interlayer coupling, producing defect-free contacts with a high interfacial transparency. The atomically thin graphene layer allows the formation of a highly coherent proximity Josephson coupling between the two NbSe2 flakes. The temperature dependence of the junction critical current (Ic) reveals short and ballistic Josephson coupling characteristics that agree with theoretical prediction. The strong Josephson coupling is confirmed by a large junction critical current density of 1.6 × 104 A/cm2, multiple Andreev reflections in the subgap structure of the differential conductance, and a magnetic-field modulation of Ic. This is the first demonstration of strongly proximity-coupled Josephson junctions with extremely clean interfaces in a dry-transfer-stacked van der Waals heterostructure.

7.
Sci Rep ; 7(1): 10953, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28887486

RESUMO

Recently, there has been significant interest in superconducting coherence via chiral quantum-Hall (QH) edge channels at an interface between a two-dimensional normal conductor and a superconductor (N-S) in a strong transverse magnetic field. In the field range where the superconductivity and the QH state coexist, the coherent confinement of electron- and hole-like quasiparticles by the interplay of Andreev reflection and the QH effect leads to the formation of Andreev edge states (AES) along the N-S interface. Here, we report the electrical conductance characteristics via the AES formed in graphene-superconductor hybrid systems in a three-terminal configuration. This measurement configuration, involving the QH edge states outside a graphene-S interface, allows the detection of the longitudinal and QH conductance separately, excluding the bulk contribution. Convincing evidence for the superconducting coherence and its propagation via the chiral QH edge channels is provided by the conductance enhancement on both the upstream and the downstream sides of the superconducting electrode as well as in bias spectroscopy results below the superconducting critical temperature. Propagation of superconducting coherence via QH edge states was more evident as more edge channels participate in the Andreev process for high filling factors with reduced valley-mixing scattering.

8.
Sci Rep ; 7(1): 6466, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28743948

RESUMO

Bilayer graphene (BLG) gapped by a vertical electric field represents a valley-symmetry-protected topological insulating state. Emergence of a new topological zero-energy mode has been proposed in BLG at a boundary between regions of inverted band gaps induced by two oppositely polarized vertical electric fields. However, its realisation has been challenged by the enormous difficulty in arranging two pairs of accurately aligned split gates on the top and bottom surfaces of clean BLG. Here we report realisation of the topological zero-energy mode in ballistic BLG, with zero-bias differential conductance close to the ideal value of 4 e 2/h (e is the electron charge and h is Planck's constant) along a boundary channel between a pair of gate-defined inverted band gaps. This constitutes the bona fide electrical-gate-tuned generation of a valley-symmetry-protected topological boundary conducting channel in BLG in zero magnetic field, which is essential to valleytronics applications of BLG.

9.
Sci Rep ; 5: 13466, 2015 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-26310774

RESUMO

The influence of static disorder on a quantum phase transition (QPT) is a fundamental issue in condensed matter physics. As a prototypical example of a disorder-tuned QPT, the superconductor-insulator transition (SIT) has been investigated intensively over the past three decades, but as yet without a general consensus on its nature. A key element is good control of disorder. Here, we present an experimental study of the SIT based on precise in-situ tuning of disorder in dual-gated bilayer graphene proximity-coupled to two superconducting electrodes through electrical and reversible control of the band gap and the charge carrier density. In the presence of a static disorder potential, Andreev-paired carriers formed close to the Fermi level in bilayer graphene constitute a randomly distributed network of proximity-induced superconducting puddles. The landscape of the network was easily tuned by electrical gating to induce percolative clusters at the onset of superconductivity. This is evidenced by scaling behavior consistent with the classical percolation in transport measurements. At lower temperatures, the solely electrical tuning of the disorder-induced landscape enables us to observe, for the first time, a crossover from classical to quantum percolation in a single device, which elucidates how thermal dephasing engages in separating the two regimes.

10.
Sci Rep ; 5: 8715, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25737106

RESUMO

We report on gate-tuned locality of superconductivity-induced phase-coherent magnetoconductance oscillations in a graphene-based Andreev interferometer, consisting of a T-shaped graphene bar in contact with a superconducting Al loop. The conductance oscillations arose from the flux change through the superconducting Al loop, with gate-dependent Fraunhofer-type modulation of the envelope. We confirm a transitional change in the character of the pair coherence, between local and nonlocal, in the same device as the effective length-to-width ratio of the device was modulated by tuning the pair-coherence length ξT in the graphene layer.

11.
Nat Commun ; 6: 6181, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25635386

RESUMO

Much efforts have been made for the realization of hybrid Josephson junctions incorporating various materials for the fundamental studies of exotic physical phenomena as well as the applications to superconducting quantum devices. Nonetheless, the efforts have been hindered by the diffusive nature of the conducting channels and interfaces. To overcome the obstacles, we vertically sandwiched a cleaved graphene monoatomic layer as the normal-conducting spacer between superconducting electrodes. The atomically thin single-crystalline graphene layer serves as an ultimately short conducting channel, with highly transparent interfaces with superconductors. In particular, we show the strong Josephson coupling reaching the theoretical limit, the convex-shaped temperature dependence of the Josephson critical current and the exceptionally skewed phase dependence of the Josephson current; all demonstrate the bona fide short and ballistic Josephson nature. This vertical stacking scheme for extremely thin transparent spacers would open a new pathway for exploring the exotic coherence phenomena occurring on an atomic scale.

12.
Nano Lett ; 14(9): 5029-34, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25084551

RESUMO

We report a surface-dominant Josephson effect in superconductor-topological insulator-superconductor (S-TI-S) devices, where a Bi1.5Sb0.5Te1.7Se1.3 (BSTS) crystal flake was adopted as an intervening TI between Al superconducting electrodes. We observed a Fraunhofer-type critical current modulation in a perpendicular magnetic field in an Al-TI-Al junction for both local and nonlocal current biasing. Fraunhofer-type modulation of the differential resistance was also observed in a neighboring Au-TI-Au normal junction when it was nonlocally biased by the Al-TI-Al junction. In all cases, the Fraunhofer-like signal was highly robust to the magnetic field up to the critical field of the Al electrodes, corresponding to the edge-stepped nonuniform supercurrent density arising from the top and rough side surfaces of the BSTS flake, which strongly suggests that the Josephson coupling in a TI is established through the surface conducting channels that are topologically protected.

13.
Nat Commun ; 4: 2525, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24056682

RESUMO

In a conventional Josephson junction of graphene, the supercurrent is not turned off even at the charge neutrality point, impeding further development of superconducting quantum information devices based on graphene. Here we fabricate bipolar Josephson junctions of graphene, in which a p-n potential barrier is formed in graphene with two closely spaced superconducting contacts, and realize supercurrent ON/OFF states using electrostatic gating only. The bipolar Josephson junctions of graphene also show fully gate-driven macroscopic quantum tunnelling behaviour of Josephson phase particles in a potential well, where the confinement energy is gate tuneable. We suggest that the supercurrent OFF state is mainly caused by a supercurrent dephasing mechanism due to a random pseudomagnetic field generated by ripples in graphene, in sharp contrast to other nanohybrid Josephson junctions. Our study may pave the way for the development of new gate-tuneable superconducting quantum information devices.

14.
Phys Rev Lett ; 110(22): 226801, 2013 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-23767741

RESUMO

We report measurements of heat transport along the edge conducting channels in monolayer graphene in the integer quantum Hall regime. Hot charge carriers are injected to the edge channels, and the thermoelectric voltage is measured at a distance along the edge from the heat injection point. We confirm that heat transport in graphene in the quantum Hall regime is chiral and the thermoelectric signal is correlated with the charge conductance of ballistic transport, following the Mott relation. The thermoelectric signal decays with distance from the heater, indicating that carriers are partially thermalized during edge transmission.

15.
Phys Rev Lett ; 110(9): 096602, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23496735

RESUMO

Coherent motion of electrons in Bloch states is one of the fundamental concepts of charge conduction in solid-state physics. In layered materials, however, such a condition often breaks down for the interlayer conduction, when the interlayer coupling is significantly reduced by, e.g., a large interlayer separation. We report that complete suppression of coherent conduction is realized even in an atomic length scale of layer separation in twisted bilayer graphene. The interlayer resistivity of twisted bilayer graphene is much higher than the c-axis resistivity of Bernal-stacked graphite and exhibits strong dependence on temperature as well as on external electric fields. These results suggest that the graphene layers are significantly decoupled by rotation and incoherent conduction is a main transport channel between the layers of twisted bilayer graphene.

16.
Phys Rev Lett ; 107(14): 146605, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-22107225

RESUMO

Stochastic switching-current distribution in a graphene-based Josephson junction exhibits a crossover from the classical to quantum regime, revealing the macroscopic quantum tunneling of a Josephson phase particle at low temperatures. Microwave spectroscopy measurements indicate a multiphoton absorption process occurring via discrete energy levels in washboard potential well. The crossover temperature for macroscopic quantum tunneling and the quantized level spacing are controlled with the gate voltage, implying its potential application to gate-tunable superconducting quantum bits.

17.
Nanotechnology ; 22(41): 415203, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-21914932

RESUMO

We fabricated graphene pnp devices, by embedding pre-defined local gates in an oxidized surface layer of a silicon substrate. With neither deposition of dielectric material on the graphene nor electron-beam irradiation, we obtained high-quality graphene pnp devices without degradation of the carrier mobility even in the local-gate region. The corresponding increased mean free path leads to the observation of ballistic and phase-coherent transport across a local gate 130 nm wide, which is about an order of magnitude wider than reported previously. Furthermore, in our scheme, we demonstrated independent control of the carrier density in the local-gate region, with a conductance map very much distinct from those of top-gated devices. This was caused by the electric field arising from the global back gate being strongly screened by the embedded local gate. Our scheme allows the realization of ideal multipolar graphene junctions with ballistic carrier transport.

18.
Phys Rev Lett ; 98(2): 027002, 2007 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-17358637

RESUMO

We report on the successful terahertz emission (0.6-1 THz) that is continuous and tunable in its frequency and power, by driving Josephson vortices in resonance with the collective standing Josephson plasma modes excited in stacked Bi2Sr2CaCu2O8+x intrinsic Josephson junctions. Shapiro-step detection was employed to confirm the terahertz-wave emission. Our results provide a strong feasibility of developing long-sought solid-state terahertz-wave emission devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...