Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 314: 137696, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36586448

RESUMO

Metal organic frameworks (MOFs) are attracting attention as high-performance adsorbents because of their high specific surface area and porosity. In particular, magnetic MIL-100(Fe) has the both characteristics of Fe3O4 and MIL-100(Fe), which are magnetic characteristics, high specific surface area and open metal sites. However, multiple synthetic steps are required for synthesis of magnetic MOF, and there is limitation that the residual organic linker and unreacted Fe center ions can be discharged, and they cause water pollution. In this study, magnetic MIL-100(Fe) was synthesized within 4 h without the addition of Fe ions by using nitric acid for the surface modification of Fe3O4. Magnetic MIL-100(Fe) was confirmed through XRD, FTIR, and TEM surface analysis, and the optimal conditions for nitric acid addition were selected through magnetization measurements and BET analysis of synthesized magnetic MIL-100(Fe). Thereafter, adsorption evaluation was performed using MB and MO, which are representative cationic and anionic dyes, respectively. The pseudo-second-order Langmuir model showed a relatively high correlation compared to the other models. This shows that the adsorption mechanism depends on both the amount of adsorbent and adsorbate, and Fe3O4 modification with nitric acid does not cause any change in the adsorption mechanism. In the case of adsorption selectivity between the MB and MO, removal rates of 93.27% and 58.73% were obtained, respectively. The above results can contribute to the simplification of the manufacturing of magnetic metal organic frameworks for removing ionic organic compounds and the minimization of water pollution in the manufacturing process.


Assuntos
Estruturas Metalorgânicas , Poluentes Químicos da Água , Adsorção , Ácido Nítrico , Fenômenos Magnéticos , Íons , Poluentes Químicos da Água/análise
2.
Chemosphere ; 303(Pt 1): 134814, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35525449

RESUMO

This study investigates the suitability of forward osmosis (FO) for recovery of volatile fatty acids (VFAs) from anaerobic digesters (ADs) and identifies the conditions favorable for commercially viable maximum recovery of VFAs. The recovery efficiency of VFAs is evaluated using a polyamide (PA)-based thin-film composite (TFC) membrane. The pH (3, 5, 7, and 9), temperature (20 °C and 40 °C), and membrane orientation (active-layer [AL]-facing FS and AL facingDS) were changed, and water flux, reverse salt flux (RSF), rejection rate, and concentration factor (CF) were evaluated for five VFAs. The water flux and RSF were higher at a higher pH, temperature and in AL-DS mode. A low rejection rate of 23-36% and a CF of 0.20-1.90 were observed at a pH below the pKa due to the solubility of molecular VFAs, while rejection rates was 80-97% and concentration increase by 1 to 4.8-fold at a pH above the pKa values were achieved due to deprotonation of VFAs and changes in membrane surface charges. With an equal increase in temperature of FS and DS from 20 to 40 °C, the rejection rate decreased by almost 20%. While with a transmembrane temperature change, a decrease in rejection rate of 20% was observed compared with baseline experiments due to decreases in viscosity and high diffusivity. In AL-DS mode, VFAs were rejected at a rate of almost 20% lower than that in AL-FS mode due to internal concentration polarization and membrane properties. These findings provide useful information on the factors that can influence optimal recovery rates of VFAs.


Assuntos
Purificação da Água , Ácidos Graxos Voláteis , Membranas Artificiais , Osmose , Cloreto de Sódio , Soluções , Temperatura , Água
3.
Bioresour Technol ; 351: 126972, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35276379

RESUMO

This study investigated the behaviour and simulation of low-molecular-weight (low-MW) micropollutants (MPs) in a powdered activated carbon (PAC)-assisted fertiliser-drawn OMBR. 10% increase in water recovery and two times thinner fouling layer were observed in OMBR with addition of 100 mg-PAC/g-MLSS. This amount of PAC also boosted the richness and diversity in microbial community (Chao1 and Shannon index increased 1.5 times). Nearly 100% low-MW MPs were eliminated in PAC-OMBR, while 2-80% was achieved with traditional OMBR. This reduced the pathway of low-MW MPs into diluted fertiliser from 47% to < 1% of the total influent mass. Hydrophilicity played the crucial role in the removal of low-MW MPs, especially acetaminophen and nonylphenol. Neural network was suitable for the simulation of MP behaviour with high accuracy (R = 0.98, RMSE = 4.7%). The findings support safer and cleaner use of the diluted fertiliser and promote a cost-effective tool for real-time analysis of MP behaviour.


Assuntos
Carvão Vegetal , Purificação da Água , Reatores Biológicos , Fertilizantes , Membranas Artificiais , Osmose , Pós
4.
Environ Pollut ; 280: 116878, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33774543

RESUMO

Trace organic compounds (TOrCs) and microplastics (MPs) have been recognized as emerging pollutants that cause severe water pollution related problems due to their non-degradable and bio-accumulative nature. Many studies on oxidation processes such as ozone have been conducted to efficiently remove TOrCs in water treatment. However, there has been a lack of research on the removal efficiency of TOrCs in the oxidation process when they co-exist with MPs and form transformation byproducts (TBPs) during this process. This study evaluates the effects of MPs on TOrC removal during ozonation at various ozone concentrations and based on the mass of MP particles in distilled water. The adsorption of TBPs and TOrCs was also evaluated using the Freundlich and Langmuir isotherm equations. The toxicity of these compounds was evaluated to confirm the risk to aquatic ecosystems. The results show that triclosan (TCS) had the highest absorption capacity amongst the TOrCs and TBPs tested. Polyvinylchloride exhibited the highest adsorption efficiency compared with polyethylene and polyethyleneterephthalate (TCS 0.341 mg/g) due to its high adsorption capacity and hydrophobicity. In the toxicity test, 2,4-dichlorophenol and 4-chloroaniline as TBPs had a relatively higher toxicity to Vibrio fischeri (a marine bacterial species) than Daphnia magna (a freshwater plankton species).


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Adsorção , Animais , Ecossistema , Microplásticos , Plásticos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
5.
ACS Appl Mater Interfaces ; 13(10): 12286-12295, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33661594

RESUMO

Discovery of a new chemical moiety is the foundation to build new functional materials. For charge-transfer-type thermally activated delayed fluorescence (TADF) emitters, donor, acceptor, and π-spacer are the three key structural components. We invented a "click-to-twist" strategy to prepare a triazole-based acceptor unit that allows for a systematic modulation of the electronic and steric properties to control the excited-state photophysics. Taking the modular approach, six different emitters were prepared by varying the donor strength and π-spacer sterics for mix-and-match. These materials display deep blue to sky blue emissions in solutions, as well as apparent TADF characteristics in doped films. Organic light emitting diodes fabricated with these new TADF materials exhibit high external quantum efficiencies of up to 20.7% and maximum luminance of 6823 cd m-2. Building upon an intuitive and operationally straightforward method to build sterically congested molecules, this work showcases a new strategy to diversify TADF emitters by a mechanism-based design and modular synthesis.

6.
Environ Res ; 194: 110597, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33316231

RESUMO

Perfluorinated chemical (PFC)-based materials have been widely applied in industry. In this study, the influence of PFCs on the physicochemical properties of membranes and that of the co-existence of organic matter and microplastics on the removal rate in the process of forward osmosis (FO) was examined. The water flux, reverse salt flux, and rejection of PFCs were evaluated under w and w/o contaminants. The lowest rejection rates of PFCs in FO membranes were observed to be 92.2% and 90.4% for FO-TFC and PA-Aqua FO membranes, respectively. The main rejection mechanism of the FO membrane is the sieving effect (p-value: PA-TFC-0.015, PA-Aqua-0.002) based on molecular volume, which is more dominant than the electrostatic repulsive force and hydrophobic interaction, the major rejection mechanisms of existing trace contaminants. In addition, we observed that the effects of co-existing pollutants in raw water have an insignificant effect on the rejection of PFCs because of the physical and chemical stability of PFCs. According to the results of this study, using the FO membrane, PFCs can effectively control not only their self-existence but also when contaminants co-exist with them in water bodies.


Assuntos
Microplásticos , Purificação da Água , Membranas Artificiais , Osmose , Plásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...