Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 14(12): 9189-93, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25971035

RESUMO

In this study, the coating of synthesized carbon nanowalls (CNWs) with various metal layers (Ni, Cu, and W) was investigated. CNWs were synthesized by microwave plasma enhanced chemical vapor deposition (PECVD) with a methane (CH4) and hydrogen (H2) gas mixture on a p-type Si wafer, and then coated with metal films (Ni, Cu, and W) using an RF magnetron sputtering system with four-inch targets. Different sputtering times (5, 10, 20, and 30 min) were established to obtain different thicknesses of the metal layers with which the CNWs were coated. Field emission scanning electron microscopy (FE-SEM) was used to examine the cross-sectional and planar conditions of the CNWs, and energy dispersive spectroscopy (EDS) was used to analyze the CNW elements. The FE-SEM analysis of the cross-sectional and planar images confirmed that the metal layers were synthesized to a depth of 0.5 µm from the surfaces of the CNWs, and to a greater depth at the ends of the CNWs, irrespective of the deposition time and the metal species. The resistivity of the as-deposited CNWs appeared as 4.18 x 10(-3) Ω cm; that of the metal-coated CNWs was slightly lower; and that of the Ni-coated CNWs was the lowest (1.74 x 10(-3) Ω cm). The mobility of the metal-coated CNWs was almost unchanged, and that of the as-deposited CNWs was 1.23 x 10(3) cm2 V(-1) s(-1).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...