Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tissue Eng Regen Med ; 18(3): 467-478, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33515168

RESUMO

BACKGROUND: Schwann cells (SCs) secrete neurotrophic factors and provide structural support and guidance during axonal regeneration. However, nearby nerves may be damaged to obtain primary SCs, and there is a lack of nervous tissue donors. We investigated the potential of Wharton's Jelly-derived mesenchymal stem cells (WJ-MSCs) in differentiating into Schwann cell-like cells (WJ-SCLCs) as an alternative to SCs. We also examined whether implantation of WJ-SCLCs-laden acellular nerve grafts (ANGs) are effective in inducing functional recovery and nerve regeneration in an animal model of peripheral nerve injury. METHODS: The differentiation of WJ-MSCs into WJ-SCLCs was determined by analyzing SC-specific markers. The secretion of neurotrophic factors was assessed by the Neuro Discovery antibody array. Neurite outgrowth and myelination of axons were found in a co-culture system involving motor neuron cell lines. The effects of ANGs on repairing sciatic nerves were evaluated using video gait angle test, isometric tetanic force analysis, and toluidine blue staining. RESULTS: Compared with undifferentiated WJ-MSCs, WJ-SCLCs showed higher expression levels of SC-specific markers such as S100ß, GFAP, KROX20, and NGFR. WJ-SCLCs also showed higher secreted amounts of brain-derived neurotrophic factor, glial cell-derived neurotrophic factor, and granulocyte-colony stimulating factor than did WJ-MSCs. WJ-SCLCs effectively promoted the outgrowth and myelination of neurites in motor neuron cells, and WJ-SCLCs laden ANGs significantly facilitated peripheral nerve regeneration in an animal model of sciatic nerve injury. CONCLUSION: WJ-MSCs were readily differentiated into WJ-SCLCs, which effectively promoted the regeneration of peripheral nerves. Transplantation of WJ-SCLCs with ANGs might be useful for assisting peripheral nerve regeneration.


Assuntos
Células-Tronco Mesenquimais , Geleia de Wharton , Animais , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Regeneração Nervosa , Células de Schwann , Nervo Isquiático
2.
J Nanosci Nanotechnol ; 18(9): 6173-6179, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29677763

RESUMO

In this work, highly ordered TiO2-reduced graphene oxide sheets (TGS) were successfully fabricated via a one-pot solvothermal method with different amounts of graphene oxide (0.01, 0.03, 0.05, and 0.07 g). This was achieved by reacting graphene oxide (GO) layers with titanium isopropoxide as the TiO2 precursor. The TGS exhibited superior efficiency compared to pristine TiO2 and the best results were recorded for the TGS-0.05 sample. The presence of the reduced graphene oxide (rGO) component was determined to be an important factor governing the separation of the photogenerated electron-hole pair via interfacial charge transfer. The significantly increased activity of the TGS under simulated solar light in the degradation of methylene blue (MB) indicates that these materials are promising photocatalysts for efficient water purification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...