Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Soc Trans ; 45(1): 101-112, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28202663

RESUMO

Many of the major neurodegenerative disorders are characterized by the accumulation of intracellular protein aggregates in neurons and other cells in brain, suggesting that errors in protein quality control mechanisms associated with the aging process play a critical role in the onset and progression of disease. The increased understanding of the unfolded protein response (UPR) signaling network and, more specifically, the structure and function of eIF2α phosphatases has enabled the development or discovery of small molecule inhibitors that show great promise in restoring protein homeostasis and ameliorating neuronal damage and death. While this review focuses attention on one or more eIF2α phosphatases, the wide range of UPR proteins that are currently being explored as potential drug targets bodes well for the successful future development of therapies to preserve neuronal function and treat neurodegenerative disease.


Assuntos
Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/enzimologia , Fosfoproteínas Fosfatases/metabolismo , Pesquisa Translacional Biomédica/métodos , Animais , Inibidores Enzimáticos/farmacologia , Humanos , Modelos Biológicos , Terapia de Alvo Molecular , Doenças Neurodegenerativas/metabolismo , Fosfoproteínas Fosfatases/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos
2.
Mol Cell Biol ; 36(13): 1868-80, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27161320

RESUMO

Phosphorylation of eukaryotic initiation factor 2α (eIF2α) controls transcriptome-wide changes in mRNA translation in stressed cells. While phosphorylated eIF2α (P-eIF2α) attenuates global protein synthesis, mRNAs encoding stress proteins are more efficiently translated. Two eIF2α phosphatases, containing GADD34 and CReP, catalyze P-eIF2α dephosphorylation. The current view of GADD34, whose transcription is stress induced, is that it functions in a feedback loop to resolve cell stress. In contrast, CReP, which is constitutively expressed, controls basal P-eIF2α levels in unstressed cells. Our studies show that GADD34 drives substantial changes in mRNA translation in unstressed cells, particularly targeting the secretome. Following activation of the unfolded protein response (UPR), rapid translation of GADD34 mRNA occurs and GADD34 is essential for UPR progression. In the absence of GADD34, eIF2α phosphorylation is persistently enhanced and the UPR translational program is significantly attenuated. This "stalled" UPR is relieved by the subsequent activation of compensatory mechanisms that include AKT-mediated suppression of PKR-like kinase (PERK) and increased expression of CReP mRNA, partially restoring protein synthesis. Our studies highlight the coordinate regulation of UPR by the GADD34- and CReP-containing eIF2α phosphatases to control cell viability.


Assuntos
Fator de Iniciação 2 em Eucariotos/metabolismo , Proteína Fosfatase 1/metabolismo , Resposta a Proteínas não Dobradas , Animais , Sobrevivência Celular , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Fosforilação , Biossíntese de Proteínas , Proteína Fosfatase 1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...