Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-25974516

RESUMO

Spindle-shaped nematic droplets (tactoids) form in solutions of rod-like molecules at the onset of the liquid crystalline phase. Their unique shape and internal structure result from the interplay of the elastic deformation of the nematic and anisotropic surface forces. The balance of these forces dictates that tactoids must display a continuous variation in aspect ratio and director-field configuration. Yet, such continuous transition has eluded observation for decades: tactoids have displayed either a bipolar configuration with particles aligned parallel to the droplet interface or a homogeneous configuration with particles aligned parallel to the long axis of the tactoid. Here, we report the first observation of the continuous transition in shape and director-field configuration of tactoids in true solutions of carbon nanotubes in chlorosulfonic acid. This observation is possible because the exceptional length of carbon nanotubes shifts the transition to a size range that can be visualized by optical microscopy. Polarization micrographs yield the interfacial and elastic properties of the system. Absorbance anisotropy measurements provide the highest nematic order parameter (S=0.79) measured to date for a nematic phase of carbon nanotubes at coexistence with its isotropic phase.

2.
Science ; 334(6052): 72-5, 2011 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-21980106

RESUMO

Thin zeolite films are attractive for a wide range of applications, including molecular sieve membranes, catalytic membrane reactors, permeation barriers, and low-dielectric-constant materials. Synthesis of thin zeolite films using high-aspect-ratio zeolite nanosheets is desirable because of the packing and processing advantages of the nanosheets over isotropic zeolite nanoparticles. Attempts to obtain a dispersed suspension of zeolite nanosheets via exfoliation of their lamellar precursors have been hampered because of their structure deterioration and morphological damage (fragmentation, curling, and aggregation). We demonstrated the synthesis and structure determination of highly crystalline nanosheets of zeolite frameworks MWW and MFI. The purity and morphological integrity of these nanosheets allow them to pack well on porous supports, facilitating the fabrication of molecular sieve membranes.

3.
Chemphyschem ; 10(12): 2116-22, 2009 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-19575482

RESUMO

Nanoparticle films coated on smooth substrates by convective assembly from dilute suspensions in dip-coating configuration are known to have discrete film morphologies. Specifically, the film morphology is characterized by alternating bands of densely packed particles and bands of bare substrate. Convective assembly is a frontal film-growth process that occurs at the three-phase contact line formed by the substrate, the suspension in which it is submersed, and the surrounding air. The bands are parallel to this contact line and can be either monolayered or multilayered. Monolayered bands result whenever the substrate is withdrawn from the suspension at a rate too high for particles to assemble into a continuous film. We report a new insight to the mechanism behind this banding phenomenon, namely, that inter-band spacing is strongly influenced by the constituent particle size. We therefore propose a geometric model relating the inter-band spacing to the particle size. By making banded films with systematically varied particle sizes (silica/zeolite, 20 to 500 nm), we are able to quantitatively validate our model. Furthermore, the model correctly predicts that multilayered banded films have higher inter-band spacings than monolayered banded films comprising the same particles.

4.
Langmuir ; 23(20): 9924-8, 2007 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-17625899

RESUMO

Silica nanoparticles with a narrow particle size distribution and controlled diameters of 10-20 nm are synthesized via hydrolysis and hydrothermal aging of tetraethylorthosilicate in an aqueous L-lysine solution. Cryo-transmission electron microscopy (cryo-TEM) reveals that the silica nanoparticles assemble to form close-packed nanoparticle crystals over short length scales on carbon-coated grids. Evaporative drying of the same sols results in nanoparticle stability and remarkable long-range facile ordering of the silica nanoparticles over scales greater than 10 microm. Whereas small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS) discount the possibility of a core (silica)-shell (lysine) structure, the possibility remains for lysine occlusion within the silica nanoparticles and concomitant hydrogen bonding effects driving self-assembly. Facile ordering of the silica nanoparticles into multilayer and monolayer coatings over square-centimeter areas by evaporation-induced self-assembly is demonstrated using a novel dip-coating device.


Assuntos
Nanopartículas , Dióxido de Silício/química , Cristalização , Microscopia Eletrônica de Varredura , Espalhamento de Radiação
5.
Langmuir ; 22(12): 5217-9, 2006 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-16732640

RESUMO

Particles of the zeolite ZSM-2 prepared as nearly hexagonal nanoplatelets were coated onto flat substrates by a convective assembly technique. On the submillimeter scale, coatings ranged in patterns from striped to continuous. Particles were preferentially oriented out-of-plane, as supported by X-ray diffractometry. The novel observation is that where the particle coating was only a monolayer thick, particles were locally close-packed and uniformly oriented both in and out of plane in a hexagonal colloidal crystalline arrangement that may be described as being tiled (observations by scanning electron microscopy). This is the first documented demonstration of convective assembly applied to anisometric nanoparticles that resulted in particulate coatings with locally ordered microstructure, i.e., colloidal crystallinity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...