Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tissue Eng Regen Med ; 14(1): 39-47, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30603460

RESUMO

Spherical neural mass (SNM) is a mass of neural precursors that have been used to generate neuronal cells with advantages of long-term passaging capability with high yield, easy storage, and thawing. In this study, we differentiated neural retinal progenitor cells (RPCs) from human induced pluripotent stem cells (hiPSC)-derived SNMs. RPCs were differentiated from SNMs with a noggin/fibroblast growth factor-basic/Dickkopf-1/Insulin-like growth factor-1/fibroblast growth factor-9 protocol for three weeks. Human RPCs expressed eye field markers (Paired box 6) and early neural retinal markers (Ceh-10 homeodomain containing homolog), but did not photoreceptor marker (Opsin 1 short-wave-sensitive). Reverse transcription polymerase chain reaction revealed that early neural retinal markers (Mammalian achaete-scute complex homolog 1, mouse atonal homolog 5, neurogenic differentiation 1) and retinal fate markers (brain-specific homeobox/POU domain transcription factor 3B and recoverin) were upregulated, while the marker of retinal pigment epithelium (microphthalmia-associated transcription factor) only showed slight upregulation. Human RPCs were transplanted into mouse (adult 8 weeks old C57BL/6) retina. Cells transplanted into the mouse retina matured and expressed markers of mature retinal cells (Opsin 1 short-wave-sensitive) and human nuclei on immunohistochemistry three months after transplantation. Development of RPCs using SNMs may offer a fast and useful method for neural retinal cell differentiation.

2.
Stem Cells Dev ; 25(13): 986-94, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27171818

RESUMO

LIM domain-binding protein 1 (Ldb1) is a nuclear cofactor that interacts with LIM homeodomain proteins to form multiprotein complexes that are important for transcription regulation. Ldb1 has been shown to play essential roles in various processes during mouse embryogenesis. To determine the role of Ldb1 in mid- and hindbrain development, we have generated a conditional mutant with a specific deletion of the Ldb1 in the Engrailed-1-expressing region of the developing mid- and hindbrain. Our study showed that the deletion impaired the expression of signaling molecules, such as fibroblast growth factor 8 (FGF8) and Wnt1, in the isthmic organizer and the expression of Shh in the ventral midbrain. The midbrain and the cerebellum were severely reduced in size, and the midbrain dopaminergic (mDA) neurons were missing in the mutant. These defects are identical to the phenotype that has been observed previously in mice with a deletion of the LIM homeodomain gene Lmx1b. Our results thus provide genetic evidence supporting that Ldb1 and Lmx1b function cooperatively to regulate mid- and hindbrain development. In addition, we found that mouse embryonic stem cells lacking Ldb1 failed to generate several types of differentiated neurons, including the mDA neurons, serotonergic neurons, cholinergic neurons, and olfactory bulb neurons, indicating an essential cell-autonomous role for Ldb1 in the development of these neurons.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Proteínas com Domínio LIM/metabolismo , Mesencéfalo/citologia , Organizadores Embrionários/embriologia , Organizadores Embrionários/metabolismo , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Cerebelo/embriologia , Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Mesencéfalo/embriologia , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Mutação/genética
3.
Endocrinol Metab (Seoul) ; 29(1): 62-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24741456

RESUMO

BACKGROUND: Parkinson disease (PD) is caused by selective cell death of dopaminergic neurons in the substantia nigra. An early onset form of PD, autosomal recessive juvenile parkinsonism has been associated with a mutation in the parkin gene. The function of parkin is known to remove misfolding proteins and protect cell death. We aimed to investigate the role of parkin against oxidative stress in neuronal cells. METHODS: Parkin knockout embryonic stem cells (PKO ES cells) were differentiated into neurons by adherent monolayer culture method. Oxidative stress was induced by the treatment of 1-methyl-4-phenylpyridinium (MPP(+)) in neurons derived from wild type and PKO ES cells, and cell viability was examined by MTT assay. After exposure to MPP(+), Tuj1-positive cell population was compared between PKO and wild type cells by fluorescence activated cell sorter (FACS) analysis. The activated caspase3 protein level was also measured by Western blot analysis, FACS and immunocytochemistry. RESULTS: There was no difference in the efficiency of neuronal differentiation between wild type and PKO ES cells. After exposure to MPP(+), no significant differences were found in cell viability and Tuj1-positive cell population between the two groups determined by MTT assay and FACS analysis, respectively. The activated caspase3 protein levels examined by Western blot analysis, FACS and immunocytochemistry were not changed in PKO cells compared with those of wild type cells after MPP(+) treatment. CONCLUSION: These results suggest that PKO neuronal cells including dopaminergic neurons are not sensitive to caspase3-dependent cell death pathway during the response against MPP(+)-induced oxidative stress.

4.
Mol Cells ; 35(1): 61-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23212346

RESUMO

We investigated the relationship between oct4 gene expression patterns and CpG sites methylation profiles during ES cell differentiation into neurons, and identified relevant binding factor. The oct4 gene expression level gradually declined as ES cell differentiation progressed, and the CpG sites in the oct4 proximal enhancer (PE) and promoter regions were methylated in concert with ES cell differentiation. An electro-mobility shift assay (EMSA) showed that putative proteins bind to CpG sites in the oct4 PE/promoter. We purified CpG binding proteins with DNAbinding purification method, and NonO was identified by liquid chromatography-mass spectrometry. EMSA with specific competitors revealed that NonO specifically binds to the conserved CCGGTGAC sequence in the oct4 promoter. Methylation at a specific cytosine residue (CC* GGTGAC) reduced the binding affinity of NonO for the recognition sequence. Chromatin immunoprecipitation analysis confirmed that NonO binds to the unmethylated oct4 promoter. There were no changes in the NonO mRNA and protein levels between ES cells and differentiated cells. The transcriptional role of NonO in oct4 gene expression was evaluated by luciferase assays and knockdown experiments. The luciferase activity significantly increased threefold when the NonO expression vector was cotransfected with the NonO recognition sequence, indicating that NonO has a transcription activator effect on oct4 gene expression. In accordance with this effect, when NonO expression was inhibited by siRNA treatment, oct4 expression was also significantly reduced. In summary, we purified NonO, a novel protein that binds to the CpG island of oct4 promoter, and positively regulates oct4 gene expression in ES cells.


Assuntos
Ilhas de CpG/genética , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica , Fator 3 de Transcrição de Octâmero/genética , Regiões Promotoras Genéticas/genética , Animais , Western Blotting , Diferenciação Celular , Células Cultivadas , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Ensaio de Desvio de Mobilidade Eletroforética , Células-Tronco Embrionárias/citologia , Técnicas Imunoenzimáticas , Luciferases , Camundongos , Fator 3 de Transcrição de Octâmero/metabolismo , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA , Reação em Cadeia da Polimerase em Tempo Real , Sequências Reguladoras de Ácido Nucleico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...