Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Mater ; 22(5): 656-665, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36959501

RESUMO

Tumour-derived exosomes (T-EXOs) impede immune checkpoint blockade therapies, motivating pharmacological efforts to inhibit them. Inspired by how antiviral curvature-sensing peptides disrupt membrane-enveloped virus particles in the exosome size range, we devised a broadly useful strategy that repurposes an engineered antiviral peptide to disrupt membrane-enveloped T-EXOs for synergistic cancer immunotherapy. The membrane-targeting peptide inhibits T-EXOs from various cancer types and exhibits pH-enhanced membrane disruption relevant to the tumour microenvironment. The combination of T-EXO-disrupting peptide and programmed cell death protein-1 antibody-based immune checkpoint blockade therapy improves treatment outcomes in tumour-bearing mice. Peptide-mediated disruption of T-EXOs not only reduces levels of circulating exosomal programmed death-ligand 1, but also restores CD8+ T cell effector function, prevents premetastatic niche formation and reshapes the tumour microenvironment in vivo. Our findings demonstrate that peptide-induced T-EXO depletion can enhance cancer immunotherapy and support the potential of peptide engineering for exosome-targeting applications.


Assuntos
Exossomos , Neoplasias , Camundongos , Animais , Exossomos/metabolismo , Inibidores de Checkpoint Imunológico/metabolismo , Imunoterapia , Neoplasias/terapia , Peptídeos/farmacologia , Peptídeos/metabolismo , Antivirais , Microambiente Tumoral
2.
Theranostics ; 12(17): 7465-7475, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438485

RESUMO

Background: Despite remarkable advances in sonodynamic therapy (SDT) of cancer, the low reactive oxygen species (ROS) quantum yield of the sonosensitizer remains a critical concern in glutathione (GSH)-overexpressing cancer cells. Methods: For enhanced SDT, we report hydrophilized self-immolative polymer (SIP)-decorated TiO2 nanoparticles (HSIPT-NPs) to achieve on-demand GSH depletion and ROS generation. Results: Upon intracellular delivery of HSIPT-NPs into hydrogen peroxide-rich cancer cells, SIP is degraded through electron transfer to produce GSH-depleting quinone methide, reprogramming GSH high cancer cells into GSH low phenotype. In the presence of ultrasound, compared to conventional TiO2 NPs, HSIPT-NPs induce significantly higher oxidative stress to cancer cells by incapacitating their antioxidant effects. SDT with HSIPT-NPs effectively inhibit tumor growth in mice via the synergistic effects of GSH depletion and ROS generation. Conclusion: On the basis of their ability to reprogram cancer cells, HSIPT-NPs offer considerable potential as a nanosensitizer for enhanced SDT.


Assuntos
Nanopartículas , Neoplasias , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Glutationa/metabolismo , Antioxidantes/farmacologia
3.
Biomaterials ; 282: 121412, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35184011

RESUMO

Therapeutic cancer vaccines have attracted attention because of their potential to prime cytotoxic T cells, which are highly antigen (Ag)-specific, allowing personalized cancer immunotherapy. However, because of their low immunogenicity, cancer vaccines have been used in only a few types of cancers in clinics, primarily because of the poor Ag presentation of dendritic cells (DCs). To address these limitations of cancer vaccines, we show that 'find-me' signaling polymeric microparticles (F-PMs) bearing tumor lysate as an Ag can efficiently recruit DCs and facilitate antigen presentation. When subcutaneously injected into tumor-bearing mice, F-PMs significantly increased mature DCs in tumor-draining lymph nodes by eliciting adenosine triphosphate (ATP)-induced chemotaxis, resulting in high antitumor efficacy. CD8+ cytotoxic T cells were remarkably enriched in the tumor microenvironment following co-administration of an immune checkpoint inhibitor with F-PMs. We demonstrated that F-PMs elicit a robust antitumor immune response, which may provide a promising therapeutic option for cancer treatment.


Assuntos
Vacinas Anticâncer , Neoplasias , Animais , Células Dendríticas , Imunoterapia/métodos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/terapia , Microambiente Tumoral
4.
Adv Sci (Weinh) ; 9(5): e2103245, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34927389

RESUMO

Despite their potent antitumor activity, clinical application of immune checkpoint inhibitors has been significantly limited by their poor response rates (<30%) in cancer patients, primarily due to immunosuppressive tumor microenvironments. As a representative immune escape mechanism, cancer-derived exosomes have recently been demonstrated to exhaust CD8+ cytotoxic T cells. Here, it is reported that sulfisoxazole, a sulfonamide antibacterial, significantly decreases the exosomal PD-L1 level in blood when orally administered to the tumor-bearing mice. Consequently, sulfisoxazole effectively reinvigorates exhausted T cells, thereby eliciting robust antitumor effects in combination with anti-PD-1 antibody. Overall, sulfisoxazole regulates immunosuppression through the inhibition of exosomal PD-L1, implying its potential to improve the response rate of anti-PD-1 antibodies.


Assuntos
Antígeno B7-H1 , Exossomos , Inibidores de Checkpoint Imunológico , Neoplasias , Sulfisoxazol , Animais , Antígeno B7-H1/antagonistas & inibidores , Exossomos/efeitos dos fármacos , Exossomos/imunologia , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunidade , Camundongos , Neoplasias/tratamento farmacológico , Sulfisoxazol/farmacologia , Sulfisoxazol/uso terapêutico , Microambiente Tumoral/efeitos dos fármacos
5.
Biomaterials ; 276: 121058, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34399119

RESUMO

Immune checkpoint therapy (ICT), which reinvigorates cytotoxic T cells, provides clinical benefits as an alternative to conventional cancer therapies. However, its clinical response rate is too low to treat an immune-excluded tumor, owing to the presence of abundant stromal elements impeding the penetration of immune cells. Here, we report that macitentan, a dual endothelin receptor antagonist approved by the FDA to treat pulmonary arterial hypertension, can be repositioned to modulate the desmoplastic tumor microenvironment (TME). In the 4T1 orthotopic tumor model, the polymeric nanoparticles bearing macitentan (M-NPs) prevent fibrotic progression by regulating the function of cancer-associated fibroblasts, attenuate the biogenesis of cancer cell-derived exosomes, and modulate the T cell subsets and distribution in TME. These results demonstrate that the M-NPs effectively reorganize the immunosuppressive TME by targeting the endothelin-1 axis and consequently exhibit synergistic antitumor effects in combination with ICT.


Assuntos
Nanopartículas , Microambiente Tumoral , Inibidores de Checkpoint Imunológico , Pirimidinas , Sulfonamidas/farmacologia
6.
Acta Biomater ; 128: 462-473, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33878476

RESUMO

Although tolerogenic dendritic cell-derived exosomes (TolDex) have emerged as promising therapeutics for rheumatoid arthritis (RA), their clinical applications have been hampered by their poor in vivo disposition after systemic administration. Herein, we report the development of stimuli-responsive TolDex that induces lesion-specific immunoregulation in RA. Responsiveness to reactive oxygen species (ROS), a physiological stimulus in the RA microenvironment, was conferred on TolDex by introducing a thioketal (TK) linker-embedded poly(ethylene glycol) (PEG) on TolDex surface via hydrophobic insertion. The detachment of PEG following overproduction of ROS facilitates the cellular uptake of ROS-responsive TolDex (TKDex) into activated immune cells. Notably, TolDex and TKDex downregulated CD40 in mature dendritic cells (mDCs) and regulated secretion of pro-inflammatory cytokines, including tumor necrosis factor (TNF)-α and interleukin-6 (IL-6) at the cellular level. In the collagen-induced arthritis (CIA) mouse model, PEG prolonged the blood circulation of TKDex following intravenous administration and enhanced their accumulation in the joints. In addition, TKDex decreased IL-6, increased transforming growth factor-ß, and induced the CD4+CD25+Foxp3+ regulatory T cells in CIA mice. Overall, ROS-responsive TolDex might have potential as therapeutic agents for RA. STATEMENT OF SIGNIFICANCE: Tolerogenic dendritic cell-derived exosomes (TolDex) are emerging immunoregulators of autoimmune diseases, including rheumatoid arthritis (RA). However, their lack of long-term stability and low targetability are still challenging. To overcome these issues, we developed reactive oxygen species (ROS)-responsive TolDex (TKDex) by incorporating the ROS-sensitive functional group-embedded poly(ethylene glycol) linker into the exosomal membrane of TolDex. Surface-engineered TKDex were internalized in mature DCs because of high ROS-sensitivity and enhanced accumulation in the inflamed joint in vivo. Further, for the first time, we investigated the potential mechanism of action of TolDex relevant to CD40 downregulation and attenuation of tumor necrosis factor (TNF)-α secretion. Our strategy highlighted the promising nanotherapeutic effects of stimuli-sensitive TolDex, which induces immunoregulation.


Assuntos
Artrite Experimental , Artrite Reumatoide , Exossomos , Animais , Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Citocinas , Células Dendríticas , Camundongos , Espécies Reativas de Oxigênio
7.
Pharmaceutics ; 11(12)2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31795253

RESUMO

Although self-assembled nanoparticles (SNPs) have been used extensively for targeted drug delivery, their clinical applications have been limited since most of the drugs are released into the blood before they reach their target site. In this study, metal-phenolic network (MPN)-coated SNPs (MPN-SNPs), which consist of an amphiphilic hyaluronic acid derivative, were prepared to be a pH-responsive nanocarrier to facilitate drug release in tumor microenvironments (TME). Due to their amphiphilic nature, SNPs were capable of encapsulating doxorubicin (DOX), chosen as the model anticancer drug. Tannic acid and FeCl3 were added to the surface of the DOX-SNPs, which allowed them to be readily coated with MPNs as the diffusion barrier. The pH-sensitive MPN corona allowed for a rapid release of DOX and effective cellular SNP uptake in the mildly acidic condition (pH 6.5) mimicking TME, to which the hyaluronic acid was exposed to facilitate receptor-mediated endocytosis. The DOX-loaded MPN-SNPs exhibited a higher cytotoxicity for the cancer cells, suggesting their potential use as a drug carrier in targeted cancer therapy.

8.
Adv Healthc Mater ; 8(4): e1801320, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30666822

RESUMO

Immunotherapy has emerged as a promising approach to treat cancer, since it facilitates eradication of cancer by enhancing innate and/or adaptive immunity without using cytotoxic drugs. Of the immunotherapeutic approaches, significant clinical potentials are shown in cancer vaccination, immune checkpoint therapy, and adoptive cell transfer. Nevertheless, conventional immunotherapies often involve immune-related adverse effects, such as liver dysfunction, hypophysitis, type I diabetes, and neuropathy. In an attempt to address these issues, polymeric nanomedicines are extensively investigated in recent years. In this review, recent advances in polymeric nanomedicines for cancer immunotherapy are highlighted and thoroughly discussed in terms of 1) antigen presentation, 2) activation of antigen-presenting cells and T cells, and 3) promotion of effector cells. Also, the future perspectives to develop ideal nanomedicines for cancer immunotherapy are provided.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Imunoterapia , Nanomedicina , Nanoestruturas/uso terapêutico , Neoplasias/terapia , Linfócitos T/imunologia , Células Apresentadoras de Antígenos/patologia , Humanos , Neoplasias/imunologia , Neoplasias/patologia , Linfócitos T/patologia
9.
Adv Mater ; 29(31)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28627770

RESUMO

While artificial muscle yarns and fibers are potentially important for many applications, the combination of large strokes, high gravimetric work capacities, short cycle times, and high efficiencies are not realized for these fibers. This paper demonstrates here electrochemically powered carbon nanotube yarn muscles that provide tensile contraction as high as 16.5%, which is 12.7 times higher than previously obtained. These electrochemical muscles can deliver a contractile energy conversion efficiency of 5.4%, which is 4.1 times higher than reported for any organic-material-based artificial muscle. All-solid-state parallel muscles and braided muscles, which do not require a liquid electrolyte, provide tensile contractions of 11.6% and 5%, respectively. These artificial muscles might eventually be deployed for a host of applications, from robotics to perhaps even implantable medical devices.


Assuntos
Nanotubos de Carbono , Técnicas Eletroquímicas , Contração Muscular , Músculos , Robótica , Resistência à Tração
10.
Adv Mater ; 28(25): 5038-44, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27110905

RESUMO

The fabrication and characterization of highly flexible textiles are reported. These textiles can harvest thermal energy from temperature gradients in the desirable through-thickness direction. The tiger yarns containing n- and p-type segments are woven to provide textiles containing n-p junctions. A high power output of up to 8.6 W m(-2) is obtained for a temperature difference of 200 °C.

11.
Nanoscale ; 8(4): 1910-4, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26754398

RESUMO

Due to excellent electrical and mechanical properties of carbon nano materials, it is of great interest to fabricate flexible, high conductive, and shape engineered carbon based fibers. As part of these approaches, hollow, twist, ribbon, and other various shapes of carbon based fibers have been researched for various functionality and application. In this paper, we suggest simple and effective method to control the fiber shape. We fabricate the three different shapes of hollow, twisted, and ribbon shaped fibers from wet spun giant graphene oxide (GGO)/single walled-nanotubes (SWNTs)/poly(vinyl alcohol) (PVA) gels. Each shaped fibers exhibit different mechanical properties. The average specific strengthes of the hollow, twist, and ribbon fibers presented here are 126.5, 106.9, and 38.0 MPa while strain are 9.3, 13.5, and 5%, respectively. Especially, the ribbon fiber shows high electrical conductivity (524 ± 64 S cm(-1)) and areal capacitance (2.38 mF cm(-2)).

12.
Nanomicro Lett ; 8(3): 254-259, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-30460285

RESUMO

Many temperature indicators or sensors show color changes for materials used in food and medical fields. However, they are not helpful for a color-blind person or children who lack judgment. In this paper, we introduce simply fabricated and more useful low-temperature indicator (~30 °C) for devices that actuates using paraffin-infiltrated multi-walled carbon nanotube (MWCNT) coiled yarn. The density difference of MWCNT yarn provides large strain (~330 %) when heat causes the melted polymer to move. Furthermore, the MWCNT yarn decreases the melting point of paraffin. These properties allow control of the actuating temperature. In addition, mechanical strength was enhanced by MWCNT than previously reported temperature-responsive actuators based on shape memory polymers. This simply fabricated temperature indicator can be applied in latching devices for medical and biological fields.

13.
Sci Rep ; 5: 9387, 2015 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-25797351

RESUMO

Fiber and yarn supercapacitors that are elastomerically deformable without performance loss are sought for such applications as power sources for wearable electronics, micro-devices, and implantable medical devices. Previously reported yarn and fiber supercapacitors are expensive to fabricate, difficult to upscale, or non-stretchable, which limits possible use. The elastomeric electrodes of the present solid-state supercapacitors are made by using giant inserted twist to coil a nylon sewing thread that is helically wrapped with a carbon nanotube sheet, and then electrochemically depositing pseudocapacitive MnO2 nanofibers. These solid-state supercapacitors decrease capacitance by less than 15% when reversibly stretched by 150% in the fiber direction, and largely retain capacitance while being cyclically stretched during charge and discharge. The maximum linear and areal capacitances (based on active materials) and areal energy storage and power densities (based on overall supercapacitor dimensions) are high (5.4 mF/cm, 40.9 mF/cm(2), 2.6 µWh/cm(2) and 66.9 µW/cm(2), respectively), despite the engineered superelasticity of the fiber supercapacitor. Retention of supercapacitor performance during large strain (50%) elastic deformation is demonstrated for supercapacitors incorporated into the wristband of a glove.

14.
ACS Nano ; 9(5): 4743-56, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25748853

RESUMO

Thermophones are highly promising for applications such as high-power SONAR arrays, flexible loudspeakers, and noise cancellation devices. So far, freestanding carbon nanotube aerogel sheets provide the most attractive performance as a thermoacoustic heat source. However, the limited accessibility of large-size freestanding carbon nanotube aerogel sheets and other even more exotic materials recently investigated hampers the field. We describe alternative materials for a thermoacoustic heat source with high-energy conversion efficiency, additional functionalities, environmentally friendly, and cost-effective production technologies. We discuss the thermoacoustic performance of alternative nanostructured materials and compare their spectral and power dependencies of sound pressure in air. We demonstrate that the heat capacity of aerogel-like nanostructures can be extracted by a thorough analysis of the sound pressure spectra. The study presented here focuses on engineering thermal gradients in the vicinity of nanostructures and subsequent heat dissipation processes from the interior of encapsulated thermoacoustic projectors. Applications of thermoacoustic projectors for high-power SONAR arrays, sound cancellation, and optimal thermal design, regarding enhanced energy conversion efficiency, are discussed.

15.
Nat Commun ; 6: 6141, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25601131

RESUMO

It is a challenge to fabricate graphene bulk materials with properties arising from the nature of individual graphene sheets, and which assemble into monolithic three-dimensional structures. Here we report the scalable self-assembly of randomly oriented graphene sheets into additive-free, essentially homogenous graphene sponge materials that provide a combination of both cork-like and rubber-like properties. These graphene sponges, with densities similar to air, display Poisson's ratios in all directions that are near-zero and largely strain-independent during reversible compression to giant strains. And at the same time, they function as enthalpic rubbers, which can recover up to 98% compression in air and 90% in liquids, and operate between -196 and 900 °C. Furthermore, these sponges provide reversible liquid absorption for hundreds of cycles and then discharge it within seconds, while still providing an effective near-zero Poisson's ratio.

16.
Nat Commun ; 5: 3928, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24887514

RESUMO

Biofuel cells that generate electricity from glucose in blood are promising for powering implantable biomedical devices. Immobilizing interconnected enzyme and redox mediator in a highly conducting, porous electrode maximizes their interaction with the electrolyte and minimizes diffusion distances for fuel and oxidant, thereby enhancing power density. Here we report that our separator-free carbon nanotube yarn biofuel cells provide an open-circuit voltage of 0.70 V, and a maximum areal power density of 2.18 mW cm(-2) that is three times higher than for previous carbon nanotube yarn biofuel cells. Biofuel cell operation in human serum provides high areal power output, as well as markedly increased lifetime (83% remained after 24 h), compared with previous unprotected biofuel cells. Our biscrolled yarn biofuel cells are woven into textiles having the mechanical robustness needed for implantation for glucose energy harvesting.


Assuntos
Fontes de Energia Bioelétrica , Glicemia , Nanotubos de Carbono , Têxteis , Terapia por Estimulação Elétrica/instrumentação , Desenho de Equipamento , Humanos , Bombas de Infusão Implantáveis , Oxirredução
17.
Nano Lett ; 14(5): 2664-9, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24742031

RESUMO

We report electrochemically powered, all-solid-state torsional and tensile artificial yarn muscles using a spinnable carbon nanotube (CNT) sheet that provides attractive performance. Large torsional muscle stroke (53°/mm) with minor hysteresis loop was obtained for a low applied voltage (5 V) without the use of a relatively complex three-electrode electromechanical setup, liquid electrolyte, or packaging. Useful tensile muscle strokes were obtained (1.3% at 2.5 V and 0.52% at 1 V) when lifting loads that are ∼25 times heavier than can be lifted by the same diameter human skeletal muscle. Also, the tensile actuator maintained its contraction following charging and subsequent disconnection from the power supply because of its own supercapacitor property at the same time. Possible eventual applications for the individual tensile and torsional muscles are in micromechanical devices, such as for controlling valves and stirring liquids in microfluidic circuits, and in medical catheters.


Assuntos
Músculo Esquelético/química , Nanotubos de Carbono/química , Catéteres , Humanos , Músculo Esquelético/ultraestrutura , Nanotubos de Carbono/ultraestrutura , Resistência à Tração
18.
Adv Mater ; 26(13): 2059-65, 2014 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-24353070

RESUMO

Electrochemical deposition of MnO2 onto carbon nanotube (CNT) yarn gives a high-performance, flexible yarn supercapacitor. The hybrid yarn's blended structure, resulting from trapping of MnO2 in its internal pores, effectively enlarges electrochemical area and reduces charge diffusion length. Accordingly, the yarn supercapacitor exhibits high values of capacitance, energy density, and average power density. Applications in wearable electronics can be envisaged.

19.
Nat Commun ; 4: 1970, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23733169

RESUMO

Flexible, wearable, implantable and easily reconfigurable supercapacitors delivering high energy and power densities are needed for electronic devices. Here we demonstrate weavable, sewable, knottable and braidable yarns that function as high performance electrodes of redox supercapacitors. A novel technology, gradient biscrolling, provides fast-ion-transport yarn in which hundreds of layers of conducting-polymer-infiltrated carbon nanotube sheet are scrolled into ~20 µm diameter yarn. Plying the biscrolled yarn with a metal wire current collector increases power generation capabilities. The volumetric capacitance is high (up to ~179 F cm(-3)) and the discharge current of the plied yarn supercapacitor linearly increases with voltage scan rate up to ~80 V s(-1) and ~20 V s(-1) for liquid and solid electrolytes, respectively. The exceptionally high energy and power densities for the complete supercapacitor, and high cycle life that little depends on winding or sewing (92%, 99% after 10,000 cycles, respectively) are important for the applications in electronic textiles.

20.
Nat Commun ; 3: 650, 2012 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-22337128

RESUMO

The extraordinary properties of graphene and carbon nanotubes motivate the development of methods for their use in producing continuous, strong, tough fibres. Previous work has shown that the toughness of the carbon nanotube-reinforced polymer fibres exceeds that of previously known materials. Here we show that further increased toughness results from combining carbon nanotubes and reduced graphene oxide flakes in solution-spun polymer fibres. The gravimetric toughness approaches 1,000 J g(-1), far exceeding spider dragline silk (165 J g(-1)) and Kevlar (78 J g(-1)). This toughness enhancement is consistent with the observed formation of an interconnected network of partially aligned reduced graphene oxide flakes and carbon nanotubes during solution spinning, which act to deflect cracks and allow energy-consuming polymer deformation. Toughness is sensitive to the volume ratio of the reduced graphene oxide flakes to the carbon nanotubes in the spinning solution and the degree of graphene oxidation. The hybrid fibres were sewable and weavable, and could be shaped into high-modulus helical springs.


Assuntos
Grafite/química , Nanotubos de Carbono/química , Óxidos/química , Polímeros/química , Carbono/química , Cristalização/métodos , Ácido Clorídrico/química , Ligação de Hidrogênio , Teste de Materiais , Microscopia Eletrônica de Varredura/métodos , Microscopia Eletrônica de Transmissão/métodos , Nanotecnologia/métodos , Análise Espectral Raman/métodos , Propriedades de Superfície , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...