Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 18(8)2018 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-30126095

RESUMO

Research into integrating the concept of the internet of things (IoT) into smart factories has accelerated, leading to the emergence of various smart factory solutions. Most ideas, however, focus on the automation and integration of processes in factory, rather than organic cooperation among mobile assets (e.g., the workers and manufactured products) and fixed manufacturing equipment (e.g., press molds, computer numerical controls, painting). Additionally, it is difficult to apply smart factory and IoT designs to analog factories, because such a factory would require the integration of mobile assets and smart manufacturing processes. Thus, existing analog factories remain intact and smart factories are newly constructed. To overcome this disparity and to make analog factories compatible with smart technologies and IoT, we propose the opportunistic and location-based collaboration architecture (OLCA) platform, which allows for smart devices to be attached to workers, products, and facilities to enable the collaboration of location and event information in devices. Using this system, we can monitor workers' positions and production processes in real-time to help prevent dangerous situations and better understand product movement. We evaluate the proposed OLCA platform's performance while using a simple smart factory scenario, thus confirming its suitability.

2.
Inorg Chem ; 37(14): 3575-3580, 1998 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-11670446

RESUMO

The complex [(tpy)Ru(tpp)RhCl(3)](PF(6))(2) (tpy = 2,2',6',2"-terpyridine and tpp = 2,3,5,6-tetrakis(2-pyridyl)pyrazine) has been prepared and its spectroscopic, electrochemical, and photophysical properties investigated. This complex couples a ruthenium light absorber to a rhodium electron acceptor to create the first tpp-bridged light-absorber-electron-acceptor dyad. This study illustrates the applicability of this (tpy)Ru(II)(&mgr;-tpp) chromophore in the construction of photochemical molecular devices. This system is of interest since the tpp ligand has been shown to provide stereochemically defined polymetallic complexes with reasonably long-lived metal to ligand charge transfer excited states. The complex [(tpy)Ru(tpp)RhCl(3)](PF(6))(2) displays a Ru-->tpp CT transition centered at 516 nm that is the lowest lying electronic transition. The electrochemistry of [(tpy)Ru(tpp)RhCl(3)](PF(6))(2) shows a Ru(II/III) couple at 1.60 V vs Ag/AgCl, an irreversible Rh(III/I) reduction at -0.23 V and, a tpp(0/)(-) couple at -0.60 V. This illustrates that although this complex has a lowest lying spin-allowed spectroscopic transition that is Ru-->tpp CT in nature, the lowest occupied molecular orbital is Rh based. Thus, following excitation of this [(tpy)Ru(tpp)RhCl(3)](PF(6))(2) complex into the Ru-->tpp CT state, electron transfer to the rhodium is thermodyamically favorable. This electron transfer leads to a quenching of the emission normally observed for this Ru-->tpp CT excited state. Emission quenching for [(tpy)Ru(tpp)RhCl(3)](PF(6))(2) via electron transfer is 80% efficient with a k(et) of 4 x 10(7) s(-)(1). Details of these studies are presented herein.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...