Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38861338

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease that leads to respiratory decline due to scarring and thickening of lung tissues. Multiple pathways contribute to the fibrotic process in this disease, such as inflammation, epithelial to mesenchymal transition and oxidative stress. The RhoA/ROCK signaling pathway is a key regulator of profibrotic signaling, as it affects the organization of actin-myosin and the remodeling of the extracellular matrix. ROCK1/2, a downstream effector of RhoA, is overexpressed in IPF patients and is a promising target for IPF therapy. However, due to hypotensive side effects of ROCK1/2 inhibitors, selective ROCK2 compounds are being explored. In this study, we report the discovery of GNS-3595, a potent and selective ROCK2 inhibitor that has ~80-fold selectivity over ROCK1 at physiological concentrations of ATP. GNS-3595 effectively inhibited ROCK2-mediated phosphorylation of myosin light chain (p-MLC) and reduced the expression of fibrosis-related proteins, such as collagen, fibronectin, and alpha-smooth muscle actin (α-SMA) in various in vitro cellular models. GNS-3595 also prevented transforming growth factor beta (TGF-ß)-induced fibroblast-to-myofibroblast transition (FMT). Additionally, in a bleomycin-induced mouse model of pulmonary fibrosis, therapeutic exposure to GNS-3595, suppressed lung fibrosis, stabilized body weight loss, and prevented fibrosis-induced lung weight gain. Transcriptome and protein expression analysis from lung tissues showed that GNS-3595 can revert the fibrosis-related gene expression induced by bleomycin. These results indicate that GNS-3595 is a highly potent, selective, and orally active ROCK2 inhibitor with promising therapeutic efficacy against pulmonary fibrosis.

2.
Prev Nutr Food Sci ; 24(1): 75-83, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31008100

RESUMO

Flavonoids are a major component of Ginkgo biloba extract (GBE). Several studies have investigated chelate formation and the redox reaction between flavonoids and metal ions; however, the effect of mineral supplements on the results from the analysis of the flavonol glycoside content in products containing GBE dietary supplement remains unknown. In this study, the effects of commonly used mineral supplements on the recovery of quercetin from GBE-containing dietary supplements were investigated using conventional methods of flavonol glycoside determination. Mineral supplements containing Zn (II), Mn (II), and Fe (II) did not affect quercetin recovery, whereas Cu (II) and Fe (III) significantly reduced recovery (P<0.05). Quercetin oxidation was prevented by adding an antioxidant to the diluent (extraction solvent). Among the tested synthetic antioxidants, tert-butyl hydroquinone (TBHQ) promoted the greatest increase in quercetin recovery. The flavonol glycoside content of commercially available GBE-containing dietary supplements was analyzed using a conventional diluent or a diluent containing 20 mg/mL TBHQ. The amount of quercetin recovered from products containing Cu (II) was found to decrease with increasing hydrolysis duration and the duration in the final test solution state using the conventional diluent, while the TBHQ-containing diluent yielded consistent quercetin contents (P<0.05). These findings suggest that quercetin, a major aglycone of GBE flavonol glycosides, can be oxidized by Cu (II) and Fe (III) during the analytical process and, therefore, the total flavonol glycoside content may be underestimated. The addition of TBHQ to the diluent can improve the accuracy and reproducibility of flavonol glycoside content analysis in GBE-containing dietary products supplemented with minerals.

3.
Mol Cells ; 41(6): 545-552, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29890824

RESUMO

Spleen tyrosine kinase (SYK) is a cytosolic non-receptor protein tyrosine kinase. Because SYK mediates key receptor signaling pathways involving the B cell receptor and Fc receptors, SYK is an attractive target for autoimmune disease and cancer treatments. To date, representative oral SYK inhibitors, including fostamatinib (R406 or R788), entospletinib (GS-9973), cerdulatinib (PRT062070), and TAK-659, have been assessed in clinical trials. Here, we report the crystal structures of SYK in complex with two newly developed inhibitors possessing 4-aminopyrido[4,3-D]pyrimidine moieties (SKI-G-618 and SKI-O-85). One SYK inhibitor (SKI-G-618) exhibited moderate inhibitory activity against SYK, whereas the other inhibitor (SKI-O-85) exhibited a low inhibitory profile against SYK. Binding mode analysis indicates that a highly potent SYK inhibitor might be developed by modifying and optimizing the functional groups that interact with Leu377, Gly378, and Val385 in the G-loop and the nearby region in SYK. In agreement with our structural analysis, one of our SYK inhibitor (SKI-G-618) shows strong inhibitory activities on the ß-hexosaminidase release and phosphorylation of SYK/Vav in RBL-2H3 cells. Taken together, our findings have important implications for the design of high affinity SYK inhibitors.


Assuntos
Inibidores de Proteínas Quinases/uso terapêutico , Quinase Syk/metabolismo , Humanos , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais
5.
Cancer Res ; 77(5): 1200-1211, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28082405

RESUMO

The clinical utility of approved EGFR small-molecule kinase inhibitors is plagued both by toxicity against wild-type EGFR and by metastatic progression in the central nervous system, a disease sanctuary site. Here, we report the discovery and preclinical efficacy of GNS-1486 and GNS-1481, two novel small-molecule EGFR kinase inhibitors that are selective for T790M-mutant isoforms of EGFR. Both agents were effective in multiple mouse xenograft models of human lung adenocarcinoma (T790M-positive or -negative), exhibiting less activity against wild-type EGFR than existing approved EGFR kinase inhibitors (including osimertinib). In addition, GNS-1486 showed superior potency against intracranial metastasis of EGFR-mutant lung adenocarcinoma. Our results offer a preclinical proof of concept for new EGFR kinase inhibitors with the potential to improve therapeutic index and efficacy against brain metastases in patients. Cancer Res; 77(5); 1200-11. ©2017 AACR.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Animais , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Camundongos , Camundongos SCID , Transfecção
6.
FEBS J ; 283(19): 3613-3625, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27504936

RESUMO

Spleen tyrosine kinase (SYK) is a cytosolic nonreceptor protein tyrosine kinase that mediates key signal transduction pathways following the activation of immune cell receptors. SYK regulates cellular events induced by the B-cell receptor and Fc receptors with high intrinsic activity. Furthermore, SYK has been regarded as an attractive target for the treatment of autoimmune diseases and cancers. Here, we report the crystal structures of SYK in complex with seven newly developed inhibitors (G206, G207, O178, O194, O259, O272, and O282) to provide structural insights into which substituents of the inhibitors and binding regions of SYK are essential for lead compound optimization. Our kinase inhibitors exhibited high inhibitory activities against SYK, with half-maximal inhibitory concentrations (IC50 ) of approximately 0.7-33 nm, but they showed dissimilar inhibitory activities against KDR, RET, JAK2, JAK3, and FLT3. Among the seven SYK inhibitors, O272 and O282 exhibited highly specific inhibitions against SYK, whereas O194 exhibited strong inhibition of both SYK and FLT3. Three inhibitors (G206, G207, and O178) more efficiently inhibited FLT3 while still substantially inhibiting SYK activity. The binding mode analysis suggested that a highly selective SYK inhibitor can be developed by optimizing the functional groups that facilitate direct interactions with Asn499. DATABASE: The atomic coordinates and structure factors for human SYK are in the Protein Data Bank under accession codes 4XG2 (inhibitor-free form), 4XG3 (G206), 4XG4 (G207), 5GHV (O178), 4XG6 (O194), 4XG7 (O259), 4XG8 (O272), and 4XG9 (O282).


Assuntos
Antineoplásicos/química , Inibidores de Proteínas Quinases/química , Quinase Syk/antagonistas & inibidores , Quinase Syk/química , Antineoplásicos/farmacologia , Cristalografia por Raios X , Desenho de Fármacos , Indazóis/química , Modelos Moleculares , Oxazinas/química , Inibidores de Proteínas Quinases/farmacologia , Pirazinas/química , Piridinas/química
8.
Blood ; 123(14): 2209-19, 2014 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-24532805

RESUMO

Aberrant activations of Fms-like tyrosine receptor kinase (FLT) 3 are implicated in the pathogenesis of 20% to 30% of patients with acute myeloid leukemia (AML). G-749 is a novel FLT3 inhibitor that showed potent and sustained inhibition of the FLT3 wild type and mutants including FLT3-ITD, FLT3-D835Y, FLT3-ITD/N676D, and FLT3-ITD/F691L in cellular assays. G-749 retained its inhibitory potency in various drug-resistance milieus such as patient plasma, FLT3 ligand surge, and stromal protection. Furthermore, it displayed potent antileukemic activity in bone marrow blasts from AML patients regardless of FLT3 mutation status, including those with little or only minor responses to AC220 or PKC412. Oral administration of G-749 yielded complete tumor regression and increased life span in animal models. Thus, G-749 appears to be a promising next-generation drug candidate for the treatment of relapsed and refractory AML patients with various FLT3-ITD/FLT3-TKD mutants and further shows the ability to overcome drug resistance.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Piridonas/uso terapêutico , Pirimidinas/uso terapêutico , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Humanos , Células K562 , Camundongos , Proteínas Mutantes/fisiologia , Mutação de Sentido Incorreto , Estrutura Terciária de Proteína/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Tirosina Quinase 3 Semelhante a fms/química , Tirosina Quinase 3 Semelhante a fms/genética
9.
PLoS One ; 8(7): e70358, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23936194

RESUMO

Human Pim1 kinase is a serine/threonine protein kinase that plays important biological roles in cell survival, apoptosis, proliferation, and differentiation. Moreover, Pim1 is up-regulated in various hematopoietic malignancies and solid tumors. Thus, Pim1 is an attractive target for cancer therapeutics, and there has been growing interest in developing small molecule inhibitors for Pim1. Here, we describe the crystal structure of Pim1 in complex with a newly developed pyrido[4,3-d]pyrimidine-derivative inhibitor (SKI-O-068). Our inhibitor exhibits a half maximum inhibitory concentration (IC50) of 123 (±14) nM and has an unusual binding mode in complex with Pim1 kinase. The interactions between SKI-O-068 and the Pim1 active site pocket residue are different from those of other scaffold inhibitor-bound structures. The binding mode analysis suggests that the SKI-O-068 inhibitor can be improved by introducing functional groups that facilitate direct interaction with Lys67, which aid in the design of an optimized inhibitor.


Assuntos
Inibidores de Proteínas Quinases/química , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-pim-1/química , Pirimidinas/química , Sítios de Ligação , Cristalografia por Raios X , Humanos , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Piridonas/química , Piridonas/metabolismo , Piridonas/farmacologia , Pirimidinas/metabolismo , Pirimidinas/farmacologia , Especificidade por Substrato
10.
J Org Chem ; 61(2): 671-676, 1996 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-11666990

RESUMO

(R)-(+)-Binol-titanium coordinates with commercial methyl 2-pyrone-3-carboxylate and promotes mild, highly enantiocontrolled Diels-Alder cycloadditions with electron-rich vinyl ether CH(2)=CHOCH(2)-1-naphthyl and vinyl silyl ether CH(2)=CHOSiMe(2)Bu-t leading to valuable 1alpha,25-dihydroxyvitamin D(3) (calcitriol) intermediate (-)-2. Unexpectedly, two subtle variables were found to be critical for obtaining reproducibly over 90% enantioselectivities in gram scale cycloadditions: (1) the moisture content (15-17% is best) of the molecular sieves used to prepare the binol-titanium complex according to the Mikami protocol and (2) the temperature (50 degrees C is best) at which the pyrone ester is mixed with the binol-titanium complex. Unsubstituted 2-pyrone undergoes ytterbium-promoted, high-pressure, regioselective, and stereoselective Diels-Alder cycloaddition with benzyl vinyl ether to form versatile bicyclic lactone (+/-)-4 on gram scale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...