Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
Materials (Basel) ; 17(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38998134

RESUMO

Polytetrafluoroethylene (PTFE) is prized for its unique properties in electrical applications, but its natural hydrophobicity poses challenges as it repels water and can cause electrical short circuits, shortening equipment lifespan. In this work, the mentioned issue has been tackled by using two different fluorinated compounds, such as perfluorooctanoic acid (PFOA)/perfluorooctanol (PFOL), along with plasma processing to enhance the surface hydrophilicity (water attraction) of PTFE. This method, demonstrated on Teflon membrane, quickly transformed their surfaces from hydrophobic to hydrophilic in less than 30 s. The treated films achieved a water contact angle saturation of around 80°, indicating a significant increase in water affinity. High-resolution C 1s X-ray photoelectron spectroscopy (XPS) confirmed the formation of new bonds, such as -COOH and -OH, on the surface, responsible for enhanced hydrophilicity. Extended plasma treatment led to further structural changes, evidenced by increased intensity in infrared (IR) and Raman spectra, particularly sensitive to vibrations associated with the C-F bond. Moreover, Attenuated Total Reflectance Fourier-Transform Infrared Spectroscopy (ATR-FTIR) showed the formation of surface-linked functional groups, which contributed to the improved water attraction. These findings decisively show that treatment with fluoro-compound along with plasma processing can be considered as a highly effective and rapid method for converting PTFE surfaces from hydrophobic to hydrophilic, facilitating its broader use in various electrical applications.

2.
Prog Lipid Res ; 95: 101288, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964473

RESUMO

B cell malignancies, comprising over 80 heterogeneous blood cancers, pose significant prognostic challenges due to intricate oncogenic signaling. Emerging evidence emphasizes the pivotal role of disrupted lipid metabolism in the development of these malignancies. Variations in lipid species, such as phospholipids, cholesterol, sphingolipids, and fatty acids, are widespread across B cell malignancies, contributing to uncontrolled cell proliferation and survival. Phospholipids play a crucial role in initial signaling cascades leading to B cell activation and malignant transformation through constitutive B cell receptor (BCR) signaling. Dysregulated cholesterol and sphingolipid homeostasis support lipid raft integrity, crucial for propagating oncogenic signals. Sphingolipids impact malignant B cell stemness, proliferation, and survival, while glycosphingolipids in lipid rafts modulate BCR activation. Additionally, cancer cells enhance fatty acid-related processes to meet heightened metabolic demands. In obese individuals, the obesity-derived lipids and adipokines surrounding adipocytes rewire lipid metabolism in malignant B cells, evading cytotoxic therapies. Genetic drivers such as MYC translocations also intrinsically alter lipid metabolism in malignant B cells. In summary, intrinsic and extrinsic factors converge to reprogram lipid metabolism, fostering aggressive phenotypes in B cell malignancies. Therefore, targeting altered lipid metabolism has translational potential for improving risk stratification and clinical management of diverse B cell malignancy subtypes.

3.
J Control Release ; 372: 699-712, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38925336

RESUMO

Esculentin-2CHa(1-30) (?ESC") has been reported as a potent anti-diabetic peptide with little toxicity. However, its very short plasma residence time severely limits the therapeutic efficacy. To address this issue, we genetically engineered a fusion protein of tandem trimeric ESC with an albumin binding domain (ABD) and a fusion partner, SUMO (named ?SUMO-3×ESC-ABD"). The SUMO-3×ESC-ABD, successfully produced from E. coli, showed low cellular and hemolytic toxicity while displaying potent activities for the amelioration of hyperglycemia as well as non-alcoholic fatty liver disease (NAFLD) in vitro. In animal studies, the estimated plasma half-life of SUMO-3×ESC-ABD was markedly longer (427-fold) than that of the ESC peptide. In virtue of the extended plasma residence, the SUMO-3×ESC-ABD could produce significant anti-hyperglycemic effects that lasted for >2 days, while both the ESC or ESC-ABD peptides elicited little effects. Further, twice-weekly treatment for 10 weeks, the SUMO-3×ESC-ABD displayed significant improvement in blood glucose control with a reduction in body weight. Most importantly, a significant improvement in the conditions of NAFLD was observed in the SUMO-3×ESC-ABD-treated mice. Along the systemic effects (by improved glucose tolerance and body weight reduction), direct inhibition of the hepatocyte lipid uptake was suggested as the major mechanism of the anti-NAFLD effects. Overall, this study demonstrated the utility of the long-acting SUMO-3×ESC-ABD as a potent drug candidate for the treatment of NAFLD.

4.
Sci Total Environ ; 942: 173796, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38851327

RESUMO

Increase in road traffic leads to increased concentrations of tire-wear particles (TWPs), a prominent source of microplastics from vehicles, in road dust. These particles can re-enter the atmosphere or move into aquatic ecosystems via runoff, impacting the environment. Consequently, accurately assessing and managing TWP levels in road dust is crucial. However, the ISO method (ISO/TS 20593 and 21396) uses a constant ratio of styrene-butadiene rubber (SBR) to natural rubber (NR) for all tires, disregarding the variability in tire composition across different types and brands. Our study found substantial SBR content (15.7 %) in heavyweight truck tires, traditionally believed to be predominantly NR. We evaluated the SBR/NR content in 15 tire types and proposed a method to more accurately evaluate TWP concentrations in road dust from five different locations. Our findings suggest that the conventional ISO method may underestimate the concentrations of TWP due to its reliance on a static ratio of SBR/NR. This study underscores the necessity for a more flexible approach that can adapt to the variability in SBR and NR content across different tire types. By delineating the limitations inherent in current assessment methods, our research contributes to a more adaptable understanding of TWP concentrations in road dust. This advancement prompts the development of a revised methodology that more accurately reflects the diverse compositions of tire rubber in environmental samples.

5.
Polymers (Basel) ; 16(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38891410

RESUMO

Polymer gels are cross-linked polymer networks swollen by a solvent. These cross-linked networks are interconnected to produce a three-dimensional molecular framework. It is this cross-linked network that provides solidity to the gel and helps to hold the solvent in place. The present work deals with the fabrication of polybenzoxazine carbon (PBzC)-based gels that could function as a solid electrode in flexible supercapacitors (SCs). With the advantage of molecular design flexibility, polybenzoxazine-based carbon containing different hetero-atoms was synthesized. A preliminary analysis of PBzC including XRD, Raman, XPS, and SEM confirmed the presence of hetero-atoms with varying pore structures. These PBz-carbons, upon reaction with polyvinyl alcohol (PVA) and acrylamide (AAm), produced a composite polymer hydrogel, PVA/poly (AAm)/PBzC. The performance of the synthesized hydrogel was analyzed using a three-electrode system. PVA/poly (AAm)/PBzC represented the working electrode. The inclusion of PBzC within the PVA/poly (AAm) matrix was evaluated by cyclic voltammetry and galvanostatic charge/discharge measurements. A substantial increase in the CV area and a longer charge/discharge time signified the importance of PBzC inclusion. The PVA/poly (AAm)/PBzC electrode exhibited larger specific capacitance (Cs) of 210 F g-1 at a current density of 0.5 A g-1 when compared with the PVA/poly (AAm) electrode [Cs = 92 F g-1]. These improvements suggest that the synthesized composite hydrogel can be used in flexible supercapacitors requiring light weight and wearability.

6.
Br J Haematol ; 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735735

RESUMO

Inherited bone marrow failure syndromes (IBMFS) pose significant diagnostic challenges due to overlapping symptoms and variable expressivity, despite evolving genomic insights. The study aimed to elucidate the genomic landscape among 130 Korean patients with IBMFS. We conducted targeted next-generation sequencing (NGS) and clinical exome sequencing (CES) across the cohort, complemented by whole genome sequencing (WGS) and chromosomal microarray (CMA) in 12 and 47 cases, respectively, with negative initial results. Notably, 50% (n = 65) of our cohort achieved a genomic diagnosis. Among these, 35 patients exhibited mutations associated with classic IBMFSs (n = 33) and the recently defined IBMFS, aplastic anaemia, mental retardation and dwarfism syndrome (AmeDS, n = 2). Classic IBMFSs were predominantly detected via targeted NGS (85%, n = 28) and CES (88%, n = 29), whereas AMeDS was exclusively identified through CES. Both CMA and WGS aided in identifying copy number variations (n = 2) and mutations in previously unexplored regions (n = 2). Additionally, 30 patients were diagnosed with other congenital diseases, encompassing 13 distinct entities including inherited thrombocytopenia (n = 12), myeloid neoplasms with germline predisposition (n = 8), congenital immune disorders (n = 7) and miscellaneous genomic conditions (n = 3). CES was particularly effective in revealing these diverse diagnoses. Our findings underscore the significance of comprehensive genomic analysis in IBMFS, highlighting the need for ongoing exploration in this complex field.

7.
Heliyon ; 10(7): e27966, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38571612

RESUMO

This study developed multi-linear regression (MLR) quantitative structure-activity relationships (QSARs) to predict n-TiO2 aggregation in the presence of high concentrations of representative emerging organic contaminants (EOCs), which presented favorable conditions to interaction with n-TiO2. The largest diameter change (Δ 517 nm at 0 h and Δ 1164 nm at 12 h) of n-TiO2 was observed by estrone, while the smallest diameter change (Δ -114 nm at 0 h and - 4 nm at 12 h) was observed by lincomycin during experimental periods. In addition, the zeta potential changes of n-TiO2 were observed that the biggest changes were observed by 17ß-estradiol (-1.3 mV) and alachlor (-10.02 mV) at 0 h, while 17ß-estradiol (-1.31 mV) and pendimethalin (-11.4 mV) showed the biggest changes at 12 h comparing to control. These changes of n-TiO2 diameter and zeta potential may implicate the effects of unique physico-chemical properties of each EOC on the surface modification of n-TiO2. Based on the interaction results, this study investigated the QSARs between n-TiO2 aggregation and physico-chemical descriptors of EOCs with 7 representative descriptors (pKa, Cw, log Kow, M.W., P.S.A., M.V., # of HBD) for predicting n-TiO2 aggregation rate kinetics at 0 h and 12 h by applying MATLAB statistical methods (model 1 - fitlm and model 2 - stepwiselm). In a model 1, QSARs showed the good coefficients of determination (R2 = 0.92) at 0 h and (R2 = 0.87) at 12 h with 7 descriptors. In a model 2, QSARs showed the goodness of fit of a model (R2 = 0.9998) with 8 descriptors (pKa, Cw, log Kow, M.W., P.S.A., M.V., #HBD, pKa⋅#H bond donors) at 0 h, while QSARs showed the coefficients of determination (R2 = 0.68) with 2 descriptors (pKa, M.V.) at 12 h. Particularly, we observed that some descriptors of EOCs such as pKa and # of HBD having polarity have more influenced on the n-TiO2 aggregation rate kinetics. Our developed QSARs demonstrated that the 7 descriptors of EOCs were significantly effective descriptors for predicting n-TiO2 aggregation rate kinetics in favorable conditions, which may implicate the complexity interactions between heterogeneous surfaces of n-TiO2 and physico-chemical properties of EOCs.

8.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167173, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631410

RESUMO

Here, we show that insulin induces palmitoylation turnover of Caveolin-2 (Cav-2) in adipocytes. Acyl protein thioesterases-1 (APT1) catalyzes Cav-2 depalmitoylation, and zinc finger DHHC domain-containing protein palmitoyltransferase 21 (ZDHHC21) repalmitoylation of the depalmitoylated Cav-2 for the turnover, thereby controlling insulin receptor (IR)-Cav-2-insulin receptor substrate-1 (IRS-1)-Akt-driven signaling. Insulin-induced palmitoylation turnover of Cav-2 facilitated glucose uptake and fat storage through induction of lipogenic genes. Cav-2-, APT1-, and ZDHHC21-deficient adipocytes, however, showed increased induction of lipolytic genes and glycerol release. In addition, white adipose tissues from insulin sensitive and resistant obese patients exhibited augmented expression of LYPLA1 (APT1) and ZDHHC20 (ZDHHC20). Our study identifies the specific enzymes regulating Cav-2 palmitoylation turnover, and reveals a new mechanism by which insulin-mediated lipid metabolism is controlled in adipocytes.


Assuntos
Adipócitos , Caveolina 2 , Proteínas Substratos do Receptor de Insulina , Insulina , Metabolismo dos Lipídeos , Lipoilação , Receptor de Insulina , Humanos , Adipócitos/metabolismo , Animais , Proteínas Substratos do Receptor de Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Camundongos , Caveolina 2/metabolismo , Caveolina 2/genética , Receptor de Insulina/metabolismo , Receptor de Insulina/genética , Insulina/metabolismo , Obesidade/metabolismo , Obesidade/genética , Tioléster Hidrolases/metabolismo , Tioléster Hidrolases/genética , Aciltransferases/metabolismo , Aciltransferases/genética , Transdução de Sinais , Resistência à Insulina , Células 3T3-L1 , Masculino
9.
Plant Physiol Biochem ; 210: 108552, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552262

RESUMO

Nanoparticles play a vital role in modern agriculture to provide the nutrients required by plants. Herein, we report the preparation of calcium-doped zinc oxide nanoparticles (CZO NPs) via a simple and cost-effective co-precipitation method, with the aim of realizing increased fertilizer response. The synthesized nanoparticles were analyzed to study their physicochemical properties using various characterization techniques. The X-ray diffraction pattern showed a small shift in peak position towards higher values of 2θ and reduced crystal size after the zinc oxide (ZnO) matrix had been doped with Ca. Field-emission scanning electron microscopy images clearly revealed a grain-like surface morphology. The X-ray photoelectron spectroscopy study produced evidence of Zn2+ substitution by Ca2+ and enhanced Zn-O bond strengths in the CZO samples. Two major crops, maize (Zea mays L.) and wheat (Triticum aestivum L.) were selected to study the impact of the CZO NP-based nanofertilizer on plant growth. During the study, the effect of the CZO-based fertilizer on growth parameters such as seed germination, root and shoot length, plant height, root and stem width, number of leaves, and leaf size was studied based on comparisons with control plants. We observed significantly increased plant growth parameters after the application of the CZO NP-based fertilizers.


Assuntos
Cálcio , Fertilizantes , Triticum , Zea mays , Óxido de Zinco , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Triticum/crescimento & desenvolvimento , Triticum/efeitos dos fármacos , Triticum/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/efeitos dos fármacos , Zea mays/metabolismo , Cálcio/metabolismo , Nanopartículas/química , Nanopartículas Metálicas/química , Difração de Raios X , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento
10.
Res Sq ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38464103

RESUMO

Acute myocardial infarction stands as a prominent cause of morbidity and mortality worldwide1-6. Clinical studies have demonstrated that the severity of cardiac injury following myocardial infarction exhibits a circadian pattern, with larger infarct sizes and poorer outcomes in patients experiencing morning onset myocardial infarctions7-14. However, the molecular mechanisms that govern circadian variations of myocardial injury remain unclear. Here, we show that BMAL114-20, a core circadian transcription factor, orchestrates diurnal variability in myocardial injury. Unexpectedly, BMAL1 modulates circadian-dependent cardiac injury by forming a transcriptionally active heterodimer with a non-canonical partner, hypoxia-inducible factor 2 alpha (HIF2A)6,21-23, in a diurnal manner. Substantiating this finding, we determined the cryo-EM structure of the BMAL1/HIF2A/DNA complex, revealing a previously unknown capacity for structural rearrangement within BMAL1, which enables the crosstalk between circadian rhythms and hypoxia signaling. Furthermore, we identified amphiregulin (AREG) as a rhythmic transcriptional target of the BMAL1/HIF2A heterodimer, critical for regulating circadian variations of myocardial injury. Finally, pharmacologically targeting the BMAL1/HIF2A-AREG pathway provides effective cardioprotection, with maximum efficacy when aligned with the pathway's circadian trough. Our findings not only uncover a novel mechanism governing the circadian variations of myocardial injury but also pave the way for innovative circadian-based treatment strategies, potentially shifting current treatment paradigms for myocardial infarction.

11.
Polymers (Basel) ; 16(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38337318

RESUMO

Supercapacitors (SCs) are considered as emerging energy storage devices that bridge the gap between electrolytic capacitors and rechargeable batteries. However, due to their low energy density, their real-time usage is restricted. Hence, to enhance the energy density of SCs, we prepared hetero-atom-doped carbon along with bimetallic oxides at different calcination temperatures, viz., HC/NiCo@600, HC/NiCo@700, HC/NiCo@800 and HC/NiCo@900. The material produced at 800 °C (HC/NiCo@800) exhibits a hierarchical 3D flower-like morphology. The electrochemical measurement of the prepared materials was performed in a three-electrode system showing an enhanced specific capacitance for HC/NiCo@600 (Cs = 1515 F g-1) in 1 M KOH, at a current density of 1 A g-1, among others. An asymmetric SC device was also fabricated using HC/NiCo@800 as anode and HC as cathode (HC/NiCo@600//HC). The fabricated device had the ability to operate at a high voltage window (~1.6 V), exhibiting a specific capacitance of 142 F g-1 at a current density of 1 A g-1; power density of 743.11 W kg-1 and energy density of 49.93 Wh kg-1. Altogether, a simple strategy of hetero-atom doping and bimetallic inclusion into the carbon framework enhances the energy density of SCs.

12.
Micromachines (Basel) ; 15(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38398979

RESUMO

To maximize the use of ZnS low-dimensional nanoparticles as high-performance supercapacitor electrodes, this work describes a simple one-pot synthesis method for producing a cluster of these particles. The ZnS nanoparticles fabricated in this work exhibit a cluster with unique low-dimensional (0D, 1D, and 2D) characteristics. Structural, morphological, and electrochemical investigations are all part of the thorough characterization of the produced materials. An X-ray diffraction pattern of clustered ZnS nanoparticles reflects the phase formation with highly stable cubic blende sphalerite polymorph. The confirmation of nanoparticle cluster formation featuring multiple low-dimensional nanostructures was achieved through field emission scanning electron microscopy (FE-SEM), while the internal structure was assessed using transmission electron microscopy (TEM). Systematically assessing the ZnS nanoparticles' electrochemical performance reveals their prospective qualities as supercapacitor electrode materials. The electrode assembled with this material on Ni foam demonstrates elevated specific capacitance (areal capacitance) values, reaching 716.8 F.g⁻1 (2150.4 mF.cm-2) at a current density of 3 mA.cm⁻2. Moreover, it reflects 69.1% capacitance retention with a four times increase in current density, i.e., 495.5 F.g-1 (1486.56 mF.cm-2) capacitance was archived at 12 mA.cm-2 with 100% Coulombic efficiency. Furthermore, the electrode exhibits prolonged cycling capability with 77.7% capacitance retention, as evidenced by its charge-discharge measurements sustained over 15,000 cycles at a current density of 25 mA cm⁻2.

13.
Polymers (Basel) ; 16(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38399894

RESUMO

A novel porous carbon, derived from polybenzoxazine and subjected to hydrogen peroxide treatment, has been meticulously crafted to serve dual functions as a supercapacitor and a CO2 capture material. While supercapacitors offer a promising avenue for electrochemical energy storage, their widespread application is hampered by relatively low energy density. Addressing this limitation, our innovative approach introduces a three-dimensional holey carbon ball framework boasting a hierarchical porous structure, thereby elevating its performance as a metal-free supercapacitor electrode. The key to its superior performance lies in the intricate design, featuring a substantial ion-accessible surface area, well-established electron and ion transport pathways, and a remarkable packing density. This unique configuration endows the holey carbon ball framework electrode with an impressive capacitance of 274 F g-1. Notably, the electrode exhibits outstanding rate capability and remarkable longevity, maintaining a capacitance retention of 82% even after undergoing 5000 cycles in an aqueous electrolyte. Beyond its prowess as a supercapacitor, the hydrogen peroxide-treated porous carbon component reveals an additional facet, showcasing an exceptional CO2 adsorption capacity. At temperatures of 0 and 25 °C, the carbon material displays a CO2 adsorption capacity of 4.4 and 4.2 mmol/g, respectively, corresponding to equilibrium pressures of 1 bar. This dual functionality renders the porous carbon material a versatile and efficient candidate for addressing the energy storage and environmental challenges of our time.

14.
Nutrients ; 16(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38201988

RESUMO

Intermittent fasting (IF), an alternating pattern of dietary restriction, reduces obesity-induced insulin resistance and inflammation. However, the crosstalk between adipose tissue and the hippocampus in diabetic encephalopathy is not fully understood. Here, we investigated the protective effects of IF against neuroinflammation and cognitive impairment in high-fat diet(HFD)-fed mice. Histological analysis revealed that IF reduced crown-like structures and adipocyte apoptosis in the adipose tissue of HFD mice. In addition to circulating lipocalin-2 (LCN2) and galectin-3 (GAL3) levels, IF reduced HFD-induced increases in LCN2- and GAL3-positive macrophages in adipose tissue. IF also improved HFD-induced memory deficits by inhibiting blood-brain barrier breakdown and neuroinflammation. Furthermore, immunofluorescence showed that IF reduced HFD-induced astrocytic LCN2 and microglial GAL3 protein expression in the hippocampus of HFD mice. These findings indicate that HFD-induced adipocyte apoptosis and macrophage infiltration may play a critical role in glial activation and that IF reduces neuroinflammation and cognitive impairment by protecting against blood-brain barrier leakage.


Assuntos
Disfunção Cognitiva , Galectina 3 , Animais , Camundongos , Doenças Neuroinflamatórias , Dieta Hiperlipídica/efeitos adversos , Lipocalina-2 , Jejum Intermitente , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/prevenção & controle
15.
ACS Appl Mater Interfaces ; 16(1): 723-730, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38147629

RESUMO

We developed Material Graph Digitizer (MatGD), which is a tool for digitizing a data line from scientific graphs. The algorithm behind the tool consists of four steps: (1) identifying graphs within subfigures, (2) separating axes and data sections, (3) discerning the data lines by eliminating irrelevant graph objects and matching with the legend, and (4) data extraction and saving. From the 62,534 papers in the areas of batteries, catalysis, and metal-organic frameworks (MOFs), 501,045 figures were mined. Remarkably, our tool showcased performance with over 99% accuracy in legend marker and text detection. Moreover, its capability for data line separation stood at 66%, which is much higher compared to those of other existing figure-mining tools. We believe that this tool will be integral to collecting both past and future data from publications, and these data can be used to train various machine learning models that can enhance material predictions and new materials discovery.

17.
Sci Rep ; 13(1): 22807, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38129582

RESUMO

Despite the current widespread use of chromosomal microarray analysis (CMA) and exome/genome sequencing for the genetic diagnosis of unexplained intellectual disability (ID) in children, gaining improved diagnostic yields and defined guidelines remains a significant challenge. This is a cohort study of children with unexplained ID. We analyzed the diagnostic yield and its correlation to clinical phenotypes in children with ID who underwent concurrent CMA and clinical exome sequencing (CES). A total of 154 children were included (110 [71.4%] male; mean [SD] age, 51.9 [23.1] months). The overall diagnosis yield was 26.0-33.8%, with CMA contributing 12.3-14.3% and CES contributing 13.6-19.4%, showing no significant difference. The diagnostic rate was significantly higher when gross motor delay (odds ratio, 6.69; 95% CI, 3.20-14.00; P < 0.001), facial dysmorphism (odds ratio, 9.34; 95% CI 4.29-20.30; P < 0.001), congenital structural anomaly (odds ratio 3.62; 95% CI 1.63-8.04; P = 0.001), and microcephaly or macrocephaly (odds ratio 4.87; 95% CI 2.05-11.60; P < 0.001) were presented. Patients with only ID without any other concomitant phenotype (63/154, 40.9%) exhibited a 6.3-11.1% diagnostic rate.


Assuntos
Deficiência Intelectual , Criança , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/genética , Estudos de Coortes , Sequenciamento do Exoma , Análise em Microsséries
18.
Cells ; 12(22)2023 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-37998347

RESUMO

Age-related microglial activation is associated with cognitive impairment. Tonicity-responsive enhancer-binding protein (TonEBP) is a critical mediator of microglial activation in response to neuroinflammation. However, the precise role of TonEBP in the middle-aged brain is not yet known. We used TonEBP haploinsufficient mice to investigate the role of TonEBP in middle-aged or amyloid ß oligomer (AßO)-injected brains and examined the effect of TonEBP knockdown on AßO-treated BV2 microglial cells. Consistent with an increase in microglial activation with aging, hippocampal TonEBP expression levels were increased in middle-aged (12-month-old) and old (24-month-old) mice compared with young (6-month-old) mice. Middle-aged TonEBP haploinsufficient mice showed reduced microglial activation and fewer memory deficits than wild-type mice. Electron microscopy revealed that synaptic pruning by microglial processes was reduced by TonEBP haploinsufficiency. TonEBP haploinsufficiency also reduced dendritic spine loss and improved memory deficits in AßO-treated mice. Furthermore, TonEBP knockdown attenuated migration and phagocytosis in AßO-treated BV2 cells. These findings suggest that TonEBP plays important roles in age-related microglial activation and memory deficits.


Assuntos
Peptídeos beta-Amiloides , Fatores de Transcrição NFATC , Animais , Camundongos , Peptídeos beta-Amiloides/metabolismo , Haploinsuficiência , Transtornos da Memória/metabolismo , Microglia/metabolismo , Fatores de Transcrição NFATC/metabolismo
19.
Nutrients ; 15(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37960230

RESUMO

An intermittent fasting (IF) regimen has been shown to protect against metabolic dysfunction-associated steatohepatitis (MASH). However, the precise mechanism remains unclear. Here, we explored how IF reduced hepatic lipid accumulation, inflammation, and fibrosis in mice with MASH. The mice were fed a high-fat diet (HFD) for 30 weeks and either continued on the HFD or were subjected to IF for the final 22 weeks. IF reduced body weight, insulin resistance, and hepatic lipid accumulation in HFD-fed mice. Lipidome analysis revealed that IF modified HFD-induced hepatic lipid composition. In particular, HFD-induced impaired autophagic flux was reversed by IF. The decreased hepatic lysosome-associated membrane protein 1 level in HFD-fed mice was upregulated in HFD+IF-fed mice. However, increased hepatic lysosomal acid lipase protein levels in HFD-fed mice were reduced by IF. IF attenuated HFD-induced hepatic inflammation and galectin-3-positive Kupffer cells. In addition to the increases in hepatic hydroxyproline and lumican levels, lipocalin-2-mediated signaling was reversed in HFD-fed mice by IF. Taken together, our findings indicate that the enhancement of the autophagy-lysosomal pathway may be a critical mechanism of MASH reduction by IF.


Assuntos
Fígado Gorduroso , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Jejum Intermitente , Fígado/metabolismo , Fígado Gorduroso/metabolismo , Inflamação/metabolismo , Dieta Hiperlipídica/efeitos adversos , Autofagia , Lisossomos/metabolismo , Lipídeos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/metabolismo
20.
Ann Clin Lab Sci ; 53(5): 792-799, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37945024

RESUMO

In 2015, germline mutations in PPP2R1A were found to cause neurodevelopmental disorders (NDDs). To date, fewer than 50 cases of PPP2R1A-related NDDs have been reported. Here, we report the first Korean case of PPP2R1A-related NDD harboring a novel de novo missense PPP2R1A variant with previously unreported clinical features. The proband, a 12-month-old female, presented with developmental delay, intractable epilepsy, microcephaly, and feeding difficulties. Brain magnetic resonance imaging showed a Dandy-Walker continuum with corpus callosum hypoplasia, periventricular leukomalacia, and brainstem and diffuse cerebral atrophy. Next-generation sequencing-based targeted gene panel testing for NDDs revealed a novel heterozygous missense variant of PPP2R1A:c.650A>G, p.(Gln217Arg). Sanger sequencing confirmed it as de novo, as neither parent carried this variant. These findings expand the phenotypic and genotypic spectra of PPP2R1A variants.


Assuntos
Transtornos do Neurodesenvolvimento , Feminino , Humanos , Lactente , Encéfalo , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Proteína Fosfatase 2/genética , República da Coreia , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...