Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncol Rep ; 50(4)2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37594135

RESUMO

Resistance to radiation therapy remains a treatment obstacle for patients with high­risk colorectal cancer. Neuromedin U (NMU) has been identified as a potential predictor of the response to radiation therapy by RNA sequencing analysis of colorectal cancer tissues obtained from patients. However, the role of NMU in colorectal cancer remains unknown. In order to investigate role of NMU in colorectal cancer, NMU expression was regulated using small interfering RNA or an NMU­expression pCMV3 vector, and cell counting, wound­healing and clonogenic assays were subsequently performed. NMU knockdown decreased colorectal cancer cell proliferation and migration, and sensitized the cells to radiation. Conversely, NMU overexpression increased radiation resistance, proliferation and migration of colorectal cancer cells. Furthermore, by western blotting and nuclear fractionation experiments, NMU knockdown inhibited the nuclear translocation of yes­associated protein (YAP) and transcriptional co­activator with PDZ­binding motif (TAZ), resulting from the phosphorylation of these proteins. By contrast, the nuclear translocation of YAP and TAZ was increased following NMU overexpression in colorectal cancer cells. Recombinant NMU regulated YAP and TAZ activity, and the expression of the YAP and TAZ transcriptional target genes AXL, connective tissue growth factor and cysteine­rich angiogenic inducer 61 in an NMU receptor 1 activity­dependent manner. These results suggested that NMU may contribute to the acquisition of radioresistance in colorectal cancer by enhancing the Hippo signaling pathway via YAP and TAZ activation.


Assuntos
Neoplasias Colorretais , Neuropeptídeos , Tolerância a Radiação , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/radioterapia , Fosforilação , Transdução de Sinais
2.
Int J Mol Sci ; 24(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37569769

RESUMO

Fine needle aspiration cytology (FNAC) is a useful tool in the evaluation of lymphadenopathy. It is a safe and minimally invasive procedure that provides preoperative details for subsequent treatment. It can also diagnose the majority of malignant tumors. However, there are some instances where the diagnosis of tumors remains obscure. To address this, we re-analyzed the misinterpreted patients' samples using mRNA sequencing technology and then identified the characteristics of non-Hodgkin's lymphoma that tend to be under-diagnosed. To decipher the involved genes and pathways, we used bioinformatic and biological analysis approaches, identifying the response to oxygen species, inositol phosphate metabolic processes, and peroxisome and PPAR pathways as possibly being involved with this type of tumor. Notably, these analyses identified FOS, ENDOG, and PRKAR2B as hub genes. cBioPortal, a multidimensional cancer genomics database, also confirmed that these genes were associated with lymphoma patients. These results thus point to candidate genes that could be used as biomarkers to minimize the false-negative rate of FNAC diagnosis. We are currently pursuing the development of a gene chip to improve the diagnosis of lymphadenopathy patients with the ultimate goal of improving their prognosis.


Assuntos
Linfadenopatia , Linfoma , Neoplasias , Humanos , Biópsia por Agulha Fina , Técnicas Citológicas
3.
Exp Dermatol ; 32(10): 1706-1716, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37421206

RESUMO

Melanoma is a notoriously radioresistant type of skin cancer. Elucidation of the specific mechanisms underlying radioresistance is necessary to improve the clinical efficacy of radiation therapy. To identify the key factors contributing to radioresistance, five melanoma cell lines were selected for study and genes that were upregulated in relatively radioresistant melanomas compared with radiosensitive melanoma cells determined via RNA sequencing technology. In particular, we focused on cyclin D1 (CCND1), a well known cell cycle regulatory molecule. In radiosensitive melanoma, overexpression of cyclin D1 reduced apoptosis. In radioresistant melanoma cell lines, suppression of cyclin D1 with a specific inhibitor or siRNA increased apoptosis and decreased cell proliferation in 2D and 3D spheroid cultures. In addition, we observed increased expression of γ-H2AX, a molecular marker of DNA damage, even at a later time after γ-irradiation, under conditions of inhibition of cyclin D1, with a response pattern similar to that of radiosensitive SK-Mel5. In the same context, expression and nuclear foci formation of RAD51, a key enzyme for homologous recombination (HR), were reduced upon inhibition of cyclin D1. Downregulation of RAD51 also reduced cell survival to irradiation. Overall, suppression of cyclin D1 expression or function led to reduced radiation-induced DNA damage response (DDR) and triggered cell death. Our collective findings indicate that the presence of increased cyclin D1 potentially contributes to the development of radioresistance through effects on RAD51 in melanoma and could therefore serve as a therapeutic target for improving the efficacy of radiation therapy.


Assuntos
Ciclina D1 , Reparo do DNA , Melanoma , Rad51 Recombinase , Humanos , Apoptose , Linhagem Celular Tumoral , Ciclina D1/genética , Ciclina D1/metabolismo , Melanoma/genética , Melanoma/radioterapia , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Tolerância a Radiação/genética
4.
PLoS One ; 18(3): e0282595, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36877703

RESUMO

How can we interpret predictions of a workload classification model? A workload is a sequence of operations executed in DRAM, where each operation contains a command and an address. Classifying a given sequence into a correct workload type is important for verifying the quality of DRAM. Although a previous model achieves a reasonable accuracy on workload classification, it is challenging to interpret the prediction results since it is a black box model. A promising direction is to exploit interpretation models which compute the amount of attribution each feature gives to the prediction. However, none of the existing interpretable models are tailored for workload classification. The main challenges to be addressed are to 1) provide interpretable features for further improving interpretability, 2) measure the similarity of features for constructing the interpretable super features, and 3) provide consistent interpretations over all instances. In this paper, we propose INFO (INterpretable model For wOrkload classification), a model-agnostic interpretable model which analyzes workload classification results. INFO provides interpretable results while producing accurate predictions. We design super features to enhance interpretability by hierarchically clustering original features used for the classifier. To generate the super features, we define and measure the interpretability-friendly similarity, a variant of Jaccard similarity between original features. Then, INFO globally explains the workload classification model by generalizing super features over all instances. Experiments show that INFO provides intuitive interpretations which are faithful to the original non-interpretable model. INFO also shows up to 2.0× faster running time than the competitor while having comparable accuracies for real-world workload datasets.


Assuntos
Corrida , Carga de Trabalho , Análise por Conglomerados , Percepção Social
5.
Diagnostics (Basel) ; 13(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36832214

RESUMO

BACKGROUND: Fine needle aspiration cytology (FNAC) is a valuable tool for evaluating lymphadenopathy. The purpose of this study was to assess the reliability and effectiveness of FNAC in the diagnosis of lymphadenopathy. METHODS: Cytological characteristics were evaluated in 432 patients who underwent lymph node FNAC and follow-up biopsy at the Korea Cancer Center Hospital from January 2015 to December 2019. RESULTS: Fifteen (3.5%) of the four hundred and thirty-two patients were diagnosed as inadequate by FNAC, with five (33.3%) of these diagnosed as metastatic carcinoma on histological examination. Of the 432 patients, 155 (35.9%) were diagnosed as benign by FNAC, with seven (4.5%) of these diagnosed histologically as metastatic carcinoma. A review of the FNAC slides, however, showed no evidence of cancer cells, suggesting that the negative results may have been due to FNAC sampling errors. An additional five samples regarded as benign on FNAC were diagnosed as non-Hodgkin lymphoma (NHL) by histological examination. Of the 432 patients, 223 (51.6%) were cytologically diagnosed as malignant, with 20 (9.0%) of these diagnosed as tissue insufficient for diagnosis (TIFD) or benign on histological examination. A review of the FNAC slides of these 20 patients, however, showed that 17 (85.0%) were positive for malignant cells. The sensitivity, specificity, positive predictive value (PPV), negative predictive values (NPV), and accuracy of FNAC were 97.8%, 97.5%, 98.7%, 96.0%, and 97.7%, respectively. CONCLUSIONS: Preoperative FNAC was safe, practical, and effective in the early diagnosis of lymphadenopathy. This method, however, had limitations in some diagnoses, suggesting that additional attempts may be required according to the clinical situation.

6.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674495

RESUMO

Precise prediction of radioresistance is an important factor in the treatment of colorectal cancer (CRC). To discover genes that regulate the radioresistance of CRCs, we analyzed an RNA sequencing dataset of patient-originated samples. Among various candidates, IGFL2-AS1, a long non-coding RNA (lncRNA), exhibited an expression pattern that was well correlated with radioresistance. IGFL2-AS1 is known to be highly expressed in various cancers and functions as a competing endogenous RNA. To further investigate the role of IGFL2-AS1 in radioresistance, which has not yet been studied, we assessed the amount of IGFL2-AS1 transcripts in CRC cell lines with varying degrees of radioresistance. This analysis showed that the more radioresistant the cell line, the higher the level of IGFL2-AS1 transcripts-a similar trend was observed in CRC samples. To directly assess the relationship between IGFL2-AS1 and radioresistance, we generated a CRC cell line stably expressing a small hairpin RNA (shRNA) targeting IGFL2-AS1. shRNA-mediated knockdown of IGFL2-AS1 decreased radioresistance and cell migration in vitro, establishing a functional role for IGFL2-AS1 in radioresistance. We also showed that downstream effectors of the AKT pathway played crucial roles. These data suggest that IGFL2-AS1 contributes to the acquisition of radioresistance by regulating the AKT pathway.


Assuntos
Neoplasias Colorretais , RNA Longo não Codificante , Humanos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/radioterapia , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Interferente Pequeno/metabolismo
7.
Cancers (Basel) ; 14(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35053535

RESUMO

Our previous work demonstrated that (E)-N-benzyl-6-(2-(3, 4-dihydroxybenzylidene) hydrazinyl)-N-methylpyridine-3-sulfonamide (BHMPS), a novel synthetic inhibitor of Rab27aSlp(s) interaction, suppresses tumor cell invasion and metastasis. Here, we aimed to further investigate the mechanisms of action and biological significance of BHMPS. BHMPS decreased the expression of epithelial-mesenchymal transition transcription factors through inhibition of focal adhesion kinase and c-Jun N-terminal kinase activation, thereby reducing the migration and invasion of breast cancer. Additionally, knockdown of Rab27a inhibited tumor migration, with changes in related signaling molecules, whereas overexpression of Rab27a reversed this phenomenon. BHMPS effectively prevented the interaction of Rab27a and its effector Slp4, which was verified by co-localization, immunoprecipitation, and in situ proximity ligation assays. BHMPS decreased the secretion of epidermal growth factor receptor and fibronectin by interfering with vesicle trafficking, as indicated by increased perinuclear accumulation of CD63-positive vesicles. Moreover, administration of BHMPS suppressed tumor growth in Rab27a-overexpressing MDA-MB-231 xenograft mice. These findings suggest that BHMPS may be a promising candidate for attenuating tumor migration and invasion by blocking Rab27a-mediated exocytosis.

8.
Biology (Basel) ; 10(6)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34205090

RESUMO

LARC patients were sorted according to their radio-responsiveness and patient-derived organoids were established from the respective cancer tissues. Expression profiles for each group were obtained using RNA-seq. Biological and bioinformatic analysis approaches were used in deciphering genes and pathways that participate in the radio-resistance of LARC. Thirty candidate genes encoding proteins involved in radio-responsiveness-related pathways, including the immune system, DNA repair and cell-cycle control, were identified. Interestingly, one of the candidate genes, cathepsin E (CTSE), exhibited differential methylation at the promoter region that was inversely correlated with the radio-resistance of patient-derived organoids, suggesting that methylation status could contribute to radio-responsiveness. On the basis of these results, we plan to pursue development of a gene chip for diagnosing the radio-responsiveness of LARC patients, with the hope that our efforts will ultimately improve the prognosis of LARC patients.

9.
Exp Dermatol ; 29(6): 562-569, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32298492

RESUMO

Melanoma is a deadly type of skin cancer that is particularly difficult to treat owing to its resistance to radiation therapy. Here, we attempted to determine the key proteins responsible for melanoma radioresistance, with the aim of improving disease response to radiation therapy. Two melanoma cell lines, SK-Mel5 and SK-Mel28, with different radiosensitivities were analysed via RNA-Seq (Quant-Seq) and target proteins with higher abundance in the more radioresistant cell line, SK-Mel28, identified. Among these proteins, integrin αvß3, a well-known molecule in cell adhesion, was selected for analysis. Treatment of SK-Mel28 cells with cilengitide, an integrin αvß3 inhibitor, as well as γ-irradiation resulted in more significant cell death than γ-irradiation alone. In addition, Akt, a downstream signal transducer of integrin αvß3, showed high basic activation in SK-Mel28 and was significantly decreased upon co-treatment with cilengitide and γ-irradiation. MK-2206, an Akt inhibitor, exerted similar effects on the SK-Mel28 cell line following γ-irradiation. Our results collectively demonstrate that the integrin αvß3-Akt signalling pathway contributes to radioresistance in SK-Mel28 cells, which may be manipulated to improve therapeutic options for melanoma.


Assuntos
Integrina alfaVbeta3/metabolismo , Melanoma/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tolerância a Radiação , Neoplasias Cutâneas/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Raios gama , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Integrina alfaVbeta3/antagonistas & inibidores , Melanoma/radioterapia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transdução de Sinais , Neoplasias Cutâneas/radioterapia , Venenos de Serpentes/farmacologia
10.
J Cell Biochem ; 120(2): 2226-2235, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30277585

RESUMO

Distal-less homeobox 3 (Dlx3), a member of the Dlx family of homeobox proteins, is a transcriptional activator of runt-related transcription factor 2 (Runx2) during osteogenic differentiation. It has been demonstrated that forced expression of Runx2 induces an osteogenic program and ectopic calcification in muscles. Therefore, it would be reasonable to predict that Dlx3 also affects myogenic differentiation. The relationship between Dlx3 and myogenesis, however, remains poorly understood. Therefore, in this study, the role and regulation of Dlx3 during myogenic differentiation were investigated. Expression level of Dlx3 was downregulated in human mesenchymal stem cells (MSCs), mouse MSCs, and C2C12 cells cultured in myogenic medium. Dlx3 level was inversely correlated with myogenic differentiation 1 and the muscle-specific microRNA, microRNA-133 (miR-133). The expression level of Runx2 was closely regulated by Dlx3 even under myogenic conditions. Overexpression of Dlx3 markedly downregulated expression levels of myogenic transcription factors and myotube formation in C2C12 cells, whereas Dlx3 knockdown enhanced myogenic differentiation. The Dlx3 3'-untranslated region (3'-UTR) has two potential binding sites for miR-133. Luciferase reporter assays demonstrated that Dlx3 is a direct target of miR-133a and miR-133b, and that the two target sites are redundantly active. Taken together, these results suggest that Dlx3 is a negative regulator of myogenic differentiation and that miR-133a and miR-133b enhance myogenic differentiation, partly through inhibition of Dlx3 expression via direct targeting of the Dlx3 3'-UTR.

11.
Biochem Biophys Res Commun ; 506(4): 939-943, 2018 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-30396570

RESUMO

Imatinib mesylate, commercially known as Gleevec/Glivec, is the first targeted anticancer drug that inhibits activity of the tyrosine kinases, c-ABL, c-KIT, and PDGFR. A number of studies have shown that treatment with imatinib mesylate elicits extracellular signal-related kinase (ERK) activation, which, in turn, has been shown to confer radioresistance. Here, we investigated whether treatment with imatinib mesylate protects skin-derived epithelial cells, including normal keratinocytes, immortalized HaCaT and A431 cancer cell lines, from the effects of γ-radiation. ERK activation was detected 30 min after imatinib mesylate treatment in all three cell lines. In cells exposed to γ-irradiation in the presence of imatinib mesylate, this activation of ERK was associated with a reduction in radiation-induced apoptosis and enhanced cell survival. Similar effects of imatinib mesylate treatment were observed following γ-irradiation of a three-dimensional human skin culture system that reproduces a fully differentiated epithelium. Collectively, our findings provide the evidence of a protective effect of imatinib mesylate against the effects of γ-irradiation on epithelial-derived cells, regardless of their malignancy status.


Assuntos
Células Epiteliais/citologia , Células Epiteliais/enzimologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Raios gama , Mesilato de Imatinib/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Citoproteção/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/efeitos da radiação , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/efeitos da radiação , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/efeitos da radiação , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Pele/citologia
12.
J Dermatol Sci ; 90(1): 13-20, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29290529

RESUMO

BACKGROUND: Histone deacetylase (HDAC) is an enzyme that regulates gene expression, cell cycle arrest, apoptosis and modulation of various pathways. HDAC inhibitors (HDACis) can modulate these pathways by hyper-acetylating target proteins, thereby acting as cancer chemotherapeutic agents. OBJECTIVE: One of HDACis, suberoylanilide hydroxamic acid (SAHA), has been found to regulate the Smad signaling pathway, by an as yet unclear mechanism. This study therefore investigated the mechanism by which SAHA regulates Smad signaling in the melanoma cell line SK-Mel-5. METHODS: Cell proliferation was assessed by MTT assays and fluorescence activated cell sorter (FACS) analysis. The activation of Smad signaling pathway was assessed by western blots analysis. The transcriptions of target genes were checked by RT-PCR and dual luciferase assay. RESULTS: Treatment with SAHA inhibited the proliferation of SK-Mel-5 cells, enhanced the phosphorylation of R-Smad, and up-regulated p21 protein. Surprisingly, R-Smad was also activated by conditioned medium from SAHA-treated SK-Mel-5 cells. An analysis of the conditioned medium showed that activin A was responsible for the activation of R-Smad. SAHA treatment enhanced the level of activin A mRNA, increasing the level of activin A in the secretome. The activity of the SAHA-treated secretome could be eliminated by pre-incubation with antibody to activin A. In addition, activin A supplemented medium could mimic the effect of the SAHA-treated secretome. CONCLUSION: These findings indicate that the anti-cancer function of SAHA is mediated, at least in part, by the upregulation of activin A.


Assuntos
Ativinas/metabolismo , Antineoplásicos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Acetilação , Ativinas/genética , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Separação Celular/métodos , Meios de Cultivo Condicionados/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Citometria de Fluxo/métodos , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/metabolismo , Humanos , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico , Melanoma/tratamento farmacológico , RNA Mensageiro/metabolismo , Proteínas Smad Reguladas por Receptor , Regulação para Cima , Vorinostat
13.
Sci Rep ; 7(1): 11074, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28894163

RESUMO

Stacking fault energy is one of key parameters for understanding the mechanical properties of face-centered cubic materials. It is well known that the plastic deformation mechanism is closely related to the size of stacking fault energy. Although alloying is a conventional method to modify the physical parameter, the underlying microscopic mechanisms are not yet clearly established. Here, we propose a simple model for determining the effect of interstitial alloying on the stacking fault energy. We derive a volumetric behaviour of stacking fault energy from the harmonic approximation to the energy-lattice curve and relate it to the contents of interstitials. The stacking fault energy is found to change linearly with the interstitial content in the usual low concentration domain. This is in good agreement with previously reported experimental and theoretical data.

14.
Biochem Biophys Res Commun ; 482(2): 270-276, 2017 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-27845041

RESUMO

Studies have shown that γ-irradiation induces various biological responses, including oxidative stress and apoptosis, as well as cellular repair and immune system responses. However, most such studies have been performed using traditional two-dimensional cell culture systems, which are limited in their ability to faithfully represent in vivo conditions. A three-dimensional (3D) environment composed of properly interconnected and differentiated cells that allow communication and cooperation among cells via secreted molecules would be expected to more accurately reflect cellular responses. Here, we investigated γ-irradiation-induced changes in the secretome of 3D-cultured keratinocytes. An analysis of keratinocyte secretome profiles following fractionated-dose γ-irradiation revealed changes in genes involved in cell adhesion, angiogenesis, and the immune system. Notably, peroxisome proliferator-activated receptor-α (PPARα) was upregulated in response to fractionated-dose γ-irradiation. This upregulation was associated with an increase in the transcription of known PPARα target genes in secretome, including angiopoietin-like protein 4, dermokine and kallikrein-related peptide 12, which were differentially regulated by fractionated-dose γ-irradiation. Collectively, our data imply a mechanism linking γ-irradiation and secretome changes, and suggest that these changes could play a significant role in the coordinated cellular responses to harmful ionizing radiation, such as those associated with radiation therapy. This extension of our understanding of γ-irradiation-induced secretome changes has the potential to improve radiation therapy strategies.


Assuntos
Raios gama , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , PPAR gama/metabolismo , Impressão Tridimensional , Proteoma/metabolismo , Adesão Celular/fisiologia , Adesão Celular/efeitos da radiação , Células Cultivadas , Fracionamento da Dose de Radiação , Relação Dose-Resposta a Droga , Humanos , Neovascularização Fisiológica/fisiologia , Neovascularização Fisiológica/efeitos da radiação , Regulação para Cima/fisiologia , Regulação para Cima/efeitos da radiação
15.
Biochem Biophys Res Commun ; 476(4): 420-425, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27237972

RESUMO

The evidence suggests that transforming growth factor-beta (TGF-ß) regulates the DNA-damage response (DDR) upon irradiation, and we previously reported that TGF-ß1 induced DNA ligase IV (Lig4) expression and enhanced the nonhomologous end-joining repair pathway in irradiated cells. In the present study, we investigated the effects of TGF-ß1 on the irradiation-induced DDRs of A431 and HaCaT cells. Cells were pretreated with or without TGF-ß1 and irradiated. At 30 min post-irradiation, DDRs were detected by immunoblotting of phospho-ATM, phospho-Chk2, and the presence of histone foci (γH2AX). The levels of all three factors were similar right after irradiation regardless of TGF-ß1 pretreatment. However, they soon thereafter exhibited downregulation in TGF-ß1-pretreated cells, indicating the acceleration of the DDR. Treatment with a TGF-ß type I receptor inhibitor (SB431542) or transfections with siRNAs against Smad2/3 or DNA ligase IV (Lig4) reversed this acceleration of the DDR. Furthermore, the frequency of irradiation-induced apoptosis was decreased by TGF-ß1 pretreatment in vivo, but this effect was abrogated by SB431542. These results collectively suggest that TGF-ß1 could enhance cell survival by accelerating the DDR via Smad signaling and Lig4 expression.


Assuntos
Dano ao DNA , Células Epiteliais/efeitos da radiação , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Animais , Linhagem Celular , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , DNA Ligase Dependente de ATP/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Raios gama , Humanos , Camundongos Nus , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Proteínas Smad/genética , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína Smad3/genética , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
16.
J Cell Biochem ; 117(1): 230-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26104915

RESUMO

Heat shock protein 90 (HSP90) regulates the stability of various proteins and plays an essential role in cellular homeostasis. Many client proteins of HSP90 are involved in cell growth, survival, and migration; processes that are generally accepted as participants in tumorigenesis. HSP90 is also up-regulated in certain tumors. Indeed, the inhibition of HSP90 is known to be effective in cancer treatment. Recently, studies showed that HSP90 regulates transforming growth factor ß1 (TGF-ß1)-induced transcription by increasing the stability of the TGF-ß receptor. TGF-ß signaling also has been implicated in cancer, suggesting the possibility that TGF-ß1 and HSP90 function cooperatively during the cancer cell progression. Here in this paper, we investigated the role of HSP90 in TGF-ß1-stimulated Mv1Lu cells. Treatment of Mv1Lu cells with the HSP90 inhibitor, 17-allylamino-demethoxy-geldanamycin (17AAG), or transfection with truncated HSP90 (ΔHSP90) significantly reduced TGF-ß1-induced cell migration. Pretreatment with 17AAG or transfection with ΔHSP90 also reduced the levels of phosphorylated Smad2 and Smad3. In addition, the HSP90 inhibition interfered the nuclear localization of Smads induced by constitutively active Smad2 (S2EE) or Smad3 (S3EE). We also found that the HSP90 inhibition decreased the protein level of importin-ß1 which is known to regulate R-Smad nuclear translocation. These data clearly demonstrate a novel function of HSP90; HSP90 modulates TGF-ß signaling by regulating Smads localization. Overall, our data could provide a detailed mechanism linking HSP90 and TGF-ß signaling. The extension of our understanding of HSP90 would offer a better strategy for treating cancer.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Animais , Benzoquinonas/farmacologia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/genética , Lactamas Macrocíclicas/farmacologia , Fosforilação/efeitos dos fármacos , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
17.
Mol Cancer Res ; 13(2): 319-29, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25319009

RESUMO

UNLABELLED: Several groups have reported that TGFß1 regulates cellular responses to γ-irradiation; however, the exact mechanism has not been fully elucidated. In the current study, the role of TGFß1 in cellular responses to γ-irradiation was investigated in detail. The data indicate that TGFß1 pretreatment decreased the aftermath of ionizing radiation (IR)-induced DNA damage in a SMAD-dependent manner. To determine the underlying mechanism for these effects, the extent of IR-induced DNA repair activity in the presence or absence of TGFß1 was examined. Studies reveal that TGFß1 upregulated DNA ligase IV (Lig4), augmented IR-induced nuclear retention of the DNA ligase, and enhanced nonhomologous end-joining (NHEJ) repair activity. In addition, knockdown of Lig4 reduced the TGFß1-induced protection against IR. Overall, these data indicate that TGFß1 facilitates the NHEJ repair process upon γ-irradiation and thereby enhances long-term survival. IMPLICATIONS: These findings provide new insight and a possible approach to controlling genotoxic stress by the TGFß signaling pathway.


Assuntos
Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , DNA Ligases/metabolismo , Transdução de Sinais , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Benzamidas/farmacologia , Técnicas de Cultura de Células , Linhagem Celular , Sobrevivência Celular/efeitos da radiação , Dano ao DNA , Reparo do DNA por Junção de Extremidades/efeitos da radiação , DNA Ligase Dependente de ATP , DNA Ligases/genética , Dioxóis/farmacologia , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação
18.
BMB Rep ; 47(2): 80-5, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24219868

RESUMO

Altered acetylcholine (Ach) homeostasis is associated with loss of viability in flies, developmental defects in mice, and cognitive deficits in human. Here, we assessed the importance of Ach in Caenorhabditis elegans development, focusing on the role of Ach during dauer formation. We found that dauer formation was disturbed in choline acetyltransferase (cha-1) and acetylcholinesterase (ace) mutants defective in Ach biosynthesis and degradation, respectively. When examined the potential role of G-proteins in dauer formation, goa-1 and egl-30 mutant worms, expressing mutated versions of mammalian G(o) and G(q) homolog, respectively, showed some abnormalities in dauer formation. Using quantitative mass spectrometry, we also found that dauer larvae had lower Ach content than did reproductively grown larvae. In addition, a proteomic analysis of acetylcholinesterase mutant worms, which have excessive levels of Ach, showed differential expression of metabolic genes. Collectively, these results indicate that alterations in Ach release may influence dauer formation in C. elegans.


Assuntos
Acetilcolina/metabolismo , Caenorhabditis elegans/metabolismo , Acetilcolina/análise , Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Colina O-Acetiltransferase/genética , Colina O-Acetiltransferase/metabolismo , Eletroforese em Gel Bidimensional , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Larva/metabolismo , Espectrometria de Massas , Mutação
19.
Exp Cell Res ; 319(4): 466-73, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23262026

RESUMO

Transforming growth factor-ß1 (TGF-ß1) regulates various biological processes, including differentiation, bone remodeling and angiogenesis, and is particularly important as a regulator of homeostasis and cell growth in normal tissue. Interestingly, some studies have reported that TGF-ß1 induces apoptosis through induction of specific genes, whereas others suggest that TGF-ß1 inhibits apoptosis and facilitates cell survival. Resolving these discrepancies, which may reflect differences in cellular context, is an important research priority. Here, using the parental mink lung epithelial cell line, Mv1Lu, and its derivatives, R1B and DR26, lacking TGF-ß receptors, we investigated the involvement of TGF-ß signaling in the effects of γ-irradiation. We found that canonical TGF-ß signaling played an important role in protecting cells from γ-irradiation. Introduction of functional TGF-ß receptors or constitutively active Smads into R1B and DR26 cell lines reduced DNA fragmentation, Caspase-3 cleavage and γ-H2AX foci formation in γ-irradiated cells. Notably, we also found that de novo protein synthesis was required for the radio-resistant effects of TGF-ß1. Our data thus indicate that TGF-ß1 protected against γ-irradiation, decreasing DNA damage and reducing apoptosis, and thereby enhanced cell survival.


Assuntos
Raios gama , Tolerância a Radiação , Fator de Crescimento Transformador beta/fisiologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Apoptose/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Sobrevivência Celular/efeitos da radiação , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/fisiologia , Células Epiteliais/efeitos da radiação , Pulmão/citologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/efeitos da radiação , Vison , Tolerância a Radiação/efeitos dos fármacos , Tolerância a Radiação/genética , Tolerância a Radiação/fisiologia , Protetores contra Radiação/metabolismo , Protetores contra Radiação/farmacologia , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Transfecção , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia
20.
Methods Cell Biol ; 106: 445-60, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22118287

RESUMO

The dauer state is a non-feeding, alternative L3 state characterized by a number of distinctive metabolic and morphological changes. There are many naturally occurring dauer-inducing pheromones, termed daumones, that have been suggested by some to exhibit differences in dauer-inducing activity. Here, we have established a standard dauer-formation assay that uses synthetic daumones 1, 2, and 3, the three major daumones. To analyze the proteome of Caenorhabditis elegans in the dauer state, we focused on O-GlcNAc modification, a cytosolic modification of proteins that is known to interact either competitively or synergistically with protein phosphorylation. Protein O-GlcNAc modification is an important biological process in cells that can ensure the timely response to extracellular stimuli, such as daumone, and maintain cellular homeostasis. Establishing a standard method for assaying dauer formation using different synthetic daumones, and using differences in O-GlcNAcylated proteins during the dauer state to analyze the dauer proteome will lead to a better understanding of dauer biology of C. elegans in the context of animal longevity and adaptation under harsh environments.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Ácidos Graxos/metabolismo , Feromônios/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Técnicas de Cultura , Eletroforese em Gel Bidimensional , Ácidos Graxos/farmacologia , Ácidos Graxos/fisiologia , Glicosilação , Feromônios/farmacologia , Feromônios/fisiologia , Processamento de Proteína Pós-Traducional , Proteólise , Proteômica , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...