Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38067227

RESUMO

Kinesin family member 4A (KIF4A) belongs to the kinesin 4 subfamily of kinesin-related proteins and is involved in the regulation of chromosome condensation and segregation during mitotic cell division. The expression of KIF4A in various types of cancer, including lung, breast, and colon cancer, has been found to be associated with poor prognosis in cancer patients. However, the exact mechanism by which it promotes tumorigenesis is not yet understood. In osteosarcoma, the expression of KIF4A has been shown to be associated with cancer stem cells (CSCs), whereas in breast cancer, it is not associated with the maintenance of CSCs but regulates the migratory ability of cells. In this light, we identified phenotypic phenomena affecting the malignancy of cancer in lung cancer and glioma, and investigated the mechanisms promoting tumorigenesis. As a result, we demonstrated that KIF4A affected lung cancer stem cells (LCSCs) and glioma stem cells (GSCs) and regulated CSC signaling mechanisms. In addition, the migratory ability of cells was regulated by KIF4A, and epithelial-to-mesenchymal transition (EMT) marker proteins were controlled. KIF4A regulated the expression of the secretory factor plasminogen activator inhibitor-1 (PAI-1), demonstrating that it sustains cancer malignancy through an autocrine loop. Taken together, these findings suggest that KIF4A regulates CSCs and EMT, which are involved in cancer recurrence and metastasis, indicating its potential value as a novel therapeutic target and prognostic marker in lung cancer and glioma.

2.
Mar Drugs ; 21(12)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38132928

RESUMO

The discovery of new highly effective anticancer drugs with few side effects is a challenge for drug development research. Natural or synthetic anticancer peptides (ACPs) represent a new generation of anticancer agents with high selectivity and specificity. The rapid emergence of chemoradiation-resistant lung cancer has necessitated the discovery of novel anticancer agents as alternatives to conventional therapeutics. In this study, we synthesized a peptide containing 22 amino acids and characterized it as a novel ACP (MP06) derived from green sea algae, Bryopsis plumosa. Using the ACP database, MP06 was predicted to possess an alpha-helical secondary structure and functionality. The anti-proliferative and apoptotic effects of the MP06, determined using the cytotoxicity assay and Annexin V/propidium iodide staining kit, were significantly higher in non-small-cell lung cancer (NSCLC) cells than in non-cancerous lung cells. We confirmed that MP06 suppressed cellular migration and invasion and inhibited the expression of N-cadherin and vimentin, the markers of epithelial-mesenchymal transition. Moreover, MP06 effectively reduced the metastasis of tumor xenografts in zebrafish embryos. In conclusion, we suggest considering MP06 as a novel candidate for the development of new anticancer drugs functioning via the ERK signaling pathway.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Peixe-Zebra , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal , Proliferação de Células , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
3.
Molecules ; 27(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36557987

RESUMO

Glioblastoma multiforme (GBM) is a fast-growing and aggressive type of brain cancer. Unlike normal brain cells, GBM cells exhibit epithelial-mesenchymal transition (EMT), which is a crucial biological process in embryonic development and cell metastasis, and are highly invasive. Copper reportedly plays a critical role in the progression of a variety of cancers, including brain, breast, and lung cancers. However, excessive copper is toxic to cells. D-penicillamine (DPA) and triethylenetetramine (TETA) are well-known copper chelators and are the mainstay of treatment for copper-associated diseases. Following treatment with copper sulfate and DPA, GBM cells showed inhibition of proliferation and suppression of EMT properties, including reduced expression levels of N-cadherin, E-cadherin, and Zeb, which are cell markers associated with EMT. In contrast, treatment with copper sulfate and TETA yielded the opposite effects in GBM. Genes, including TGF-ß, are associated with an increase in copper levels, implying their role in EMT. To analyze the invasion and spread of GBM, we used zebrafish embryos xenografted with the GBM cell line U87. The invasion of GBM cells into zebrafish embryos was markedly inhibited by copper treatment with DPA. Our findings suggest that treatment with copper and DPA inhibits proliferation and EMT through a mechanism involving TGF-ß/Smad signaling in GBM. Therefore, DPA, but not TETA, could be used as adjuvant therapy for GBM with high copper concentrations.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Glioblastoma/metabolismo , Cobre/farmacologia , Peixe-Zebra , Linhagem Celular Tumoral , Sulfato de Cobre/farmacologia , Neoplasias Encefálicas/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/farmacologia , Quelantes/farmacologia , Transição Epitelial-Mesenquimal , Movimento Celular
4.
Mar Drugs ; 20(12)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36547923

RESUMO

Lectin is a carbohydrate-binding protein that recognizes specific cells by binding to cell-surface polysaccharides. Tumor cells generally show various glycosylation patterns, making them distinguishable from non-cancerous cells. Consequently, lectin has been suggested as a good anticancer agent. Herein, the anticancer activity of Bryopsis plumosa lectins (BPL1, BPL2, and BPL3) was screened and tested against lung cancer cell lines (A549, H460, and H1299). BPL2 showed high anticancer activity compared to BPL1 and BPL3. Cell viability was dependent on BPL2 concentration and incubation time. The IC50 value for lung cancer cells was 50 µg/mL after 24 h of incubation in BPL2 containing medium; however, BPL2 (50 µg/mL) showed weak toxicity in non-cancerous cells (MRC5). BPL2 affected cancer cell growth while non-cancerous cells were less affected. Further, BPL2 (20 µg/mL) inhibited cancer cell invasion and migration (rates were ˂20%). BPL2 induced the downregulation of epithelial-to-mesenchymal transition-related genes (Zeb1, vimentin, and Twist). Co-treatment with BPL2 and gefitinib (10 µg/mL and 10 µM, respectively) showed a synergistic effect compared with monotherapy. BPL2 or gefitinib monotherapy resulted in approximately 90% and 70% cell viability, respectively, with concomitant treatment showing 40% cell viability. Overall, BPL2 can be considered a good candidate for development into an anticancer agent.


Assuntos
Antineoplásicos , Clorófitas , Lectinas de Ligação a Manose , Humanos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Clorófitas/química , Gefitinibe/farmacologia , Neoplasias Pulmonares , Lectinas de Ligação a Manose/química , Lectinas de Ligação a Manose/isolamento & purificação , Lectinas de Ligação a Manose/farmacologia
5.
Mar Drugs ; 20(5)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35621979

RESUMO

Discovering new drug candidates with high efficacy and few side effects is a major challenge in new drug development. The two evolutionarily related peptides oxytocin (OXT) and arginine vasopressin (AVP) are known to be associated with a variety of physiological and psychological processes via the association of OXT with three types of AVP receptors. Over decades, many synthetic analogs of these peptides have been designed and tested for therapeutic applications; however, only a few studies of their natural analogs have been performed. In this study, we investigated the bioactivity and usefulness of two natural OXT/AVP analogs that originate from the marine invertebrate Octopus vulgaris, named octopressin (OTP) and cephalotocin (CPT). By measuring the intracellular Ca2+ or cyclic AMP increase in each OXT/AVP receptor subtype-overexpressing cell, we found that CPT, but not OTP, acts as a selective agonist of human AVP type 1b and 2 receptors. This behavior is reminiscent of desmopressin, the most widely prescribed antidiuretic drug in the world. Similar to the case for desmopressin, a single intravenous tail injection of CPT into Sprague-Dawley rats reduced urine output and increased urinary osmolality. In conclusion, we suggest that CPT has a significant antidiuretic effect and that CPT might be beneficial for treating urological conditions such as nocturia, enuresis, and diabetes insipidus.


Assuntos
Antidiuréticos , Octopodiformes , Ocitocina , Animais , Antidiuréticos/farmacologia , Arginina Vasopressina/análogos & derivados , Desamino Arginina Vasopressina/farmacologia , Felipressina/farmacologia , Octopodiformes/metabolismo , Ocitocina/análogos & derivados , Ocitocina/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Vasopressinas/agonistas , Receptores de Vasopressinas/metabolismo
6.
Commun Biol ; 4(1): 778, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34163000

RESUMO

Cancer stem cells (CSCs) are regarded as essential targets to overcome tumor progression and therapeutic resistance; however, practical targeting approaches are limited. Here, we identify testis-specific Y-like protein 5 (TSPYL5) as an upstream regulator of CSC-associated genes in non-small cell lung cancer cells, and suggest as a therapeutic target for CSC elimination. TSPYL5 elevation is driven by AKT-dependent TSPYL5 phosphorylation at threonine-120 and stabilization via inhibiting its ubiquitination. TSPYL5-pT120 also induces nuclear translocation and functions as a transcriptional activator of CSC-associated genes, ALDH1 and CD44. Also, nuclear TSPYL5 suppresses the transcription of PTEN, a negative regulator of PI3K signaling. TSPYL5-pT120 maintains persistent CSC-like characteristics via transcriptional activation of CSC-associated genes and a positive feedback loop consisting of AKT/TSPYL5/PTEN signaling pathway. Accordingly, elimination of TSPYL5 by inhibiting TSPYL5-pT120 can block aberrant AKT/TSPYL5/PTEN cyclic signaling and TSPYL5-mediated cancer stemness regulation. Our study suggests TSPYL5 be an effective target for therapy-resistant cancer.


Assuntos
Neoplasias Pulmonares/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Proteínas Nucleares/antagonistas & inibidores , PTEN Fosfo-Hidrolase/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transporte Ativo do Núcleo Celular , Animais , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Feminino , Gefitinibe/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Terapia de Alvo Molecular , Proteínas Nucleares/fisiologia , PTEN Fosfo-Hidrolase/fisiologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
7.
Int J Mol Sci ; 21(18)2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32971893

RESUMO

Studies have shown that cancer stem cells (CSCs) are involved in resistance and metastasis of cancer; thus, therapies targeting CSCs have been proposed. Here, we report that heat shock 70-kDa protein 1-like (HSPA1L) is partly involved in enhancing epithelial-mesenchymal transition (EMT) and CSC-like properties in non-small cell lung cancer (NSCLC) cells. Aldehyde dehydrogenase 1 (ALDH1) is considered a CSC marker in some lung cancers. Here, we analyzed transcriptional changes in genes between ALDH1high and ALDH1low cells sorted from A549 NSCLC cells and found that HSPA1L was highly expressed in ALDH1high cells. HSPA1L played two important roles in enhancing CSC-like properties. First, HSPA1L interacts directly with IGF1Rß and integrin αV to form a triple complex that is involved in IGF1Rß activation. HSPA1L/integrin αV complex-associated IGF1Rß activation intensified the EMT-associated cancer stemness and γ-radiation resistance through its downstream AKT/NF-κB or AKT/GSK3ß/ß-catenin activation pathway. Secondly, HSPA1L was also present in the nucleus and could bind directly to the promoter region of ß-catenin to function as a transcription activator of ß-catenin, an important signaling protein characterizing CSCs by regulating ALDH1 expression. HSPA1L may be a novel potential target for cancer treatment because it both enhances IGF1Rß activation and regulates γß-catenin transcription, accumulating CSC-like properties.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Receptor IGF Tipo 1/metabolismo , Transcrição Gênica , beta Catenina/biossíntese , Células A549 , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas de Choque Térmico HSP70/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas de Neoplasias/genética , Células-Tronco Neoplásicas/patologia , Receptor IGF Tipo 1/genética , beta Catenina/genética
8.
Cancer Sci ; 109(11): 3519-3531, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30191639

RESUMO

Microenvironment, such as hypoxia common to cancer, plays a critical role in the epithelial-to-mesenchymal transition (EMT) program, which is a major route of cancer metastasis and confers γ-radiation resistance to cells. Herein, we showed that transgelin 2 (TAGLN2), an actin-binding protein, is significantly induced in hypoxic lung cancer cells and that Snail1 is simultaneously increased, which induces EMT by downregulating E-cadherin expression. Forced TAGLN2 expression induced severe cell death; however, a small population of cells surviving after forced TAGLN2 overexpression showed γ-radiation resistance, which might promote tumor relapse and recurrence. These surviving cells showed high metastatic activity with an increase of EMT markers including Snail1. In these cells, TAGLN2 activated the insulin-like growth factor 1 receptor ß (IGF1Rß)/PI3K/AKT pathway by recruitment of focal adhesion kinase to the IGF1R signaling complex. Activation of the IGF1Rß/PI3K/AKT pathway also induced inactivation of glycogen synthase kinase 3ß (GSK3ß), which is involved in Snail1 stabilization. Therefore, both the IGF1Rß inhibitor (AG1024) and the PI3K inhibitor (LY294002) or AKT inactivation with MK2206 lower the cellular level of Snail1. Involvement of GSK3ß was also confirmed by treatment with lithium chloride, the inducer of GSK3ß phosphorylation, or MG132, the 26S proteasomal inhibitor, which also stabilized Snail1. In conclusion, the present study provides important evidence that hypoxia-inducible TAGLN2 is involved in the selection of cancer cells with enhanced EMT properties to overcome the detrimental environment of cancer cells.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Transição Epitelial-Mesenquimal , Adesões Focais/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/metabolismo , Tolerância a Radiação , Receptores de Somatomedina/metabolismo , Células A549 , Hipóxia Celular , Linhagem Celular Tumoral , Raios gama , Regulação Neoplásica da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Receptor IGF Tipo 1 , Transdução de Sinais , Regulação para Cima
9.
Sci Rep ; 8(1): 10711, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-30013043

RESUMO

Tescalcin (TESC; also known as calcineurin B homologous protein 3, CHP3) has recently reported as a regulator of cancer progression. Here, we showed that the elevation of TESC in non-small cell lung cancer (NSCLC) intensifies epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) properties, consequently enhancing the cellular resistance to γ-radiation. TESC expression and the phosphorylation (consequent activation) of signal transducer and activator of transcription 3 (STAT3) were upregulated in CSC-like ALDH1high cells than in ALDH1low cells sorted from A549 NSCLC cells. Knockdown of TESC suppressed CSC-like properties as well as STAT3 activation through inhibition of insulin-like growth factor 1 receptor (IGF1R), a major signaling pathway of lung cancer stem cells. TESC activated IGF1R by the direct recruitment of proto-oncogene tyrosine kinase c-Src (c-Src) to IGF1Rß complex. Treatment of IGF1R inhibitor, AG1024, also suppressed c-Src activation, implicating that TESC mediates the mutual activation of c-Src and IGF1R. STAT3 activation by TESC/c-Src/IGF1R signaling pathway subsequently upregulated ALDH1 expression, which enhanced EMT-associated CSC-like properties. Chromatin immunoprecipitation and luciferase assay demonstrated that STAT3 is a potential transcription activator of ALDH1 isozymes. Ultimately, targeting TESC can be a potential strategy to overcome therapeutic resistance in NSCLC caused by augmented EMT and self-renewal capacity.


Assuntos
Aldeído Desidrogenase/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Células-Tronco Neoplásicas/patologia , Fator de Transcrição STAT3/metabolismo , Células A549 , Família Aldeído Desidrogenase 1 , Animais , Proteína Tirosina Quinase CSK , Proteínas de Ligação ao Cálcio/genética , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos da radiação , Feminino , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Pulmonares/radioterapia , Camundongos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/enzimologia , Células-Tronco Neoplásicas/efeitos da radiação , Proto-Oncogene Mas , RNA Interferente Pequeno/metabolismo , Tolerância a Radiação/efeitos dos fármacos , Radiossensibilizantes/administração & dosagem , Receptor IGF Tipo 1 , Receptores de Somatomedina/antagonistas & inibidores , Receptores de Somatomedina/metabolismo , Retinal Desidrogenase , Tirfostinas/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases da Família src/metabolismo
10.
Oncotarget ; 8(60): 101284-101297, 2017 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-29254164

RESUMO

Transmembrane 4 L6 family proteins have been known to promote cancer. In this study, we demonstrated that transmembrane 4 L6 family member 4 (TM4SF4), which is induced by γ-radiation in non-small cell lung cancer (NSCLC) cells, is involved in epithelial-to-mesenchymal transition (EMT) and cancer stem cell (CSC) properties of NSCLC through the regulation of osteopontin (OPN). Forced TM4SF4 overexpression in A549 cells increased the secretion of OPN, which activates CD44 or integrin signaling and thus maintains EMT-associated CSC-like properties. OPN, known as a downstream target of ß-catenin/T-cell factor 4 (TCF-4), was induced by up-regulated ß-catenin via TM4SF4-driven phosphorylation of glycogen synthase kinase 3b (GSK3ß). TCF4 complexed to promoter regions of OPN in TM4SF4-overexpressing A549 cells was also confirmed by chromatin immunoprecipitation. Knockout of either ß-catenin or TCF4-suppressed OPN expression, demonstrating that both factors are essential for OPN expression in NSCLC cells. OPN secreted by TM4SF4/GSK3ß/ß-catenin signaling activated the JAK2/STAT3 or FAK/STAT3 pathway, which also up-regulates OPN expression in an autocrine manner and consequently maintains the self-renewal and metastatic capacity of cancer cells. Neutralizing antibody to OPN blocked the autocrine activation of OPN expression, consequently weakened the metastatic and self-renewal capacity of cancer cells. Collectively, our findings indicate that TM4SF4-triggered OPN expression is involved in the persistent reinforcement of EMT or cancer stemness by creating a positive feedback autocrine loop with JAK2/STAT3 or FAK/STAT3 pathways.

11.
Biochem Biophys Res Commun ; 482(1): 35-42, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27836546

RESUMO

Amyloid ß precursor protein binding family B member 1(APBB1) was first identified as a binding partner of amyloid precursor protein during brain development, but its function in the context of cancer remain unclear. Here we show for the first time that APBB1 is partly associated with intensifying cancer stem cell(CSC) and epithelial-to-mesenchymal transition (EMT) and enhancing radiation-resistant properties of lung cancer cells. We found that APBB1 was highly expressed in ALDH1high CSC-like cells sorted from A549 lung cancer cells. In APBB1-deficient H460 cells with forced overexpression of APBB1, the protein directly interacted with IGF1Rß, enhanced phosphorylation of IGF1Rß/PI3K/AKT pathway(activation) and subsequently induced the phosphorylation of GSK3ß(inactivation). This phosphorylation stabilized Snail1, a negative regulator of E-cadherin expression, and regulated ß-catenin-mediated ALDH1 expression, which are representative markers for EMT and CSCs, respectively. In contrast, suppression of APBB1 expression with siRNA yielded the opposite effects in APBB1-rich A549 cells. We concluded that APBB1 partly regulates the expression of ALDH1. We also found that APBB1 regulates activation of nuclear factor-κB, which is involved in reducing various stresses including oxidative stress, which suggests that APBB1 is associated with γ-radiation sensitivity. Our findings imply that APBB1 plays an important role in the maintenance of EMT-associated CSC-like properties and γ-radiation resistance via activation of IGF1Rß/AKT/GSK3ß pathway in lung cancer cells, highlighting APBB1 as a potential target for therapeutic cancer treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Transição Epitelial-Mesenquimal , Células-Tronco Neoplásicas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Receptores de Somatomedina/metabolismo , Células A549 , Linhagem Celular Tumoral , Relação Dose-Resposta à Radiação , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , Células-Tronco Neoplásicas/efeitos da radiação , Tolerância a Radiação , Dosagem Radioterapêutica , Receptor IGF Tipo 1 , Transdução de Sinais/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...