Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hum Kinet ; 92: 29-41, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38736599

RESUMO

In this study, we tested several hypotheses related to changes in motor unit activation patterns after warm-up exercise. Fifteen healthy young men participated in the experiment and the main task was to produce voluntary torque through the elbow joint under the isometric condition. The experimental conditions consisted of two directions of torque, including flexion and extension, at two joint angles, 10° and 90°. Participants were asked to increase the joint torque to the maximal level at a rate of 10% of the maximum voluntary torque. The warm-up protocol followed the ACSM guidelines, which increased body temperature by approximately 1.5°C. Decomposition electromyography electrodes, capable of extracting multiple motor unit action potentials from surface signals, were placed on the biceps and triceps brachii muscles, and joint torque was measured on the dynamometer. The mean firing rate and the recruitment threshold of the decomposed motor units were quantified. In addition, a single motor unit activity from the spike train was quantified for each of five selected motor units. The magnitude of joint torque increased with the warm-up exercise for all the experimental conditions. The results of the motor unit analyses showed a positive and beneficial effect of the warm-up exercise, with an increase in both the mean firing rate and the recruitment threshold by about 56% and 33%, respectively, particularly in the agonist muscle. Power spectral density in the gamma band, which is thought to be the dominant voluntary activity, was also increased by the warm-up exercise only in the high threshold motor units.

2.
Motor Control ; 27(1): 35-53, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36252947

RESUMO

Gravity provides critical information for the adjustment of body movement or manipulation of the handheld object. Indeed, the changes in gravity modify the mechanical constraints of prehensile actions, which may be accompanied by the changes in control strategies. The current study examined the effect of the gravitational force of a handheld object on the control strategies for subactions of multidigit prehension. A total of eight subjects performed prehensile tasks while grasping and lifting the handle by about 250 mm along the vertical direction. The experiment consisted of two conditions: lifting gravity-induced (1g) and weightless (0g) handheld objects. The weightless object condition was implemented utilizing a robot arm that produced a constant antigravitational force of the handle. The current analysis was limited to the two-dimensional grasping plane, and the notion of the virtual finger was employed to formulate the cause-effect chain of elemental variables during the prehensile action. The results of correlation analyses confirmed that decoupled organization of two subsets of mechanical variables was observed in both 1g and 0g conditions. While lifting the handle, the two subsets of variables were assumed to contribute to the grasping and rotational equilibrium, respectively. Notably, the normal forces of the thumb and virtual finger had strong positive correlations. In contrast, the normal forces had no significant relationship with the variables as to the moment of force. We conclude that the gravitational force had no detrimental effect on adjustments of the mechanical variables for the rotational action and its decoupling from the grasping equilibrium.


Assuntos
Força da Mão , Desempenho Psicomotor , Humanos , Rotação , Dedos , Movimento
3.
Int J Mol Sci ; 19(10)2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30282926

RESUMO

Eukaryotic lysyl-tRNA synthetases (LysRS) have an N-terminal appended tRNA-interaction domain (RID) that is absent in their prokaryotic counterparts. This domain is intrinsically disordered and lacks stable structures. The disorder-to-order transition is induced by tRNA binding and has implications on folding and subsequent assembly into multi-tRNA synthetase complexes. Here, we expressed and purified RID from human LysRS (hRID) in Escherichia coli and performed a detailed mutagenesis of the appended domain. hRID was co-purified with nucleic acids during Ni-affinity purification, and cumulative mutations on critical amino acid residues abolished RNA binding. Furthermore, we identified a structural ensemble between disordered and helical structures in non-RNA-binding mutants and an equilibrium shift for wild-type into the helical conformation upon RNA binding. Since mutations that disrupted RNA binding led to an increase in non-functional soluble aggregates, a stabilized RNA-mediated structural transition of the N-terminal appended domain may have implications on the functional organization of human LysRS and multi-tRNA synthetase complexes in vivo.


Assuntos
Lisina-tRNA Ligase/química , Lisina-tRNA Ligase/metabolismo , Ácidos Nucleicos/química , Ácidos Nucleicos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Humanos , Mutação , Ligação Proteica , Estrutura Secundária de Proteína , RNA de Transferência/química , RNA de Transferência/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...