Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-31841981

RESUMO

There is a great need for high-throughput protein purification to produce protein molecules for research and therapeutics. Although there have been significant advancements made in automated multi-step chromatography and preparative in-process design-of-experiment (DOE) capabilities in commercial fast performance liquid chromatography (FPLC) instruments, almost all commercial FPLCs rely on a binary buffer mixing system, which hinders automated buffer preparation. Nevertheless, current-generation FPLCs are equipped with a quaternary mixer designed for limited in-line buffer preparation and preparative pH scouting DOE experiments. We decided to leverage the quaternary mixing capability by extending and re-programming AkTA Avant's quaternary valve into an automated in-process buffer preparation system to simplify automated purification requiring complex washing steps. We accomplished this by using two extra inlet valves, a sample valve, and versatile valve to split inputs of the quaternary valve into software-selectable stock solutions of pH buffers, salts, eluents, and additives. We also devised a new flow scheme to perform automated two-step chromatography using only one versatile valve. This was accomplished by using only stock parts and software to facilitate reproduction. To demonstrate the versatility and capability of the system, we purified a transmembrane protein that requires a detergent to stay soluble and needs an in-column, high-salt washing step to achieve high purity.


Assuntos
Automação Laboratorial/instrumentação , Membrana Celular/química , Cromatografia Líquida/instrumentação , Proteínas de Membrana/isolamento & purificação , Soluções Tampão , Cromatografia Líquida/métodos , Desenho de Equipamento , Humanos
2.
Protein Expr Purif ; 137: 7-12, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28619526

RESUMO

Pichia pastoris is a highly successful recombinant protein expression system due to its ability to quickly generate large quantities of recombinant proteins in simple media. P. pastoris has been used to successfully generate milligram quantities of many important human membrane proteins, including G-protein coupled receptors, ion channels, and transporters, which are becoming increasingly important therapeutic targets. Despite these successes, protein expression in P. pastoris is still cumbersome due to a need to change growth media from glycerol media to methanol induction media, which minimizes inhibition of the AOX1 promoter by residual glycerol. Taking advantage of this behavior of the AOX1 promoter, we developed Buffered extra-YNB Glycerol Methanol (BYGM) auto-induction media (100 mM potassium phosphate pH 6.0, 2.68% w/v YNB, 0.4% v/v glycerol, 0.5% v/v methanol, and 8 × 10-5% w/v biotin) which not only simplified the protein expression process, but also optimized protein expression levels in P. pastoris. We successfully used this auto-induction method to overexpress the target in both MutS and Mut+ strains. Moreover, we show that this method can facilitate screening high-expressing clones, as well as enable parallel protein production in P. pastoris.


Assuntos
Membrana Celular , Proteínas Fúngicas , Expressão Gênica , Proteínas de Membrana , Pichia , Regiões Promotoras Genéticas , Membrana Celular/genética , Membrana Celular/metabolismo , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Pichia/genética , Pichia/metabolismo
3.
Science ; 343(6175): 1133-6, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24604198

RESUMO

Although substantial progress has been achieved in the structural analysis of exporters from the superfamily of adenosine triphosphate (ATP)-binding cassette (ABC) transporters, much less is known about how they selectively recognize substrates and how substrate binding is coupled to ATP hydrolysis. We have addressed these questions through crystallographic analysis of the Atm1/ABCB7/HMT1/ABCB6 ortholog from Novosphingobium aromaticivorans DSM 12444, NaAtm1, at 2.4 angstrom resolution. Consistent with a physiological role in cellular detoxification processes, functional studies showed that glutathione derivatives can serve as substrates for NaAtm1 and that its overexpression in Escherichia coli confers protection against silver and mercury toxicity. The glutathione binding site highlights the articulated design of ABC exporters, with ligands and nucleotides spanning structurally conserved elements to create adaptable interfaces accommodating conformational rearrangements during the transport cycle.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Proteínas de Bactérias/química , Metais Pesados/metabolismo , Metais Pesados/toxicidade , Sphingomonadaceae/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Glutationa/química , Inativação Metabólica , Multimerização Proteica , Estrutura Secundária de Proteína , Especificidade por Substrato
4.
J Struct Biol ; 158(3): 494-502, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17275331

RESUMO

Crystal structures of the bacterial multidrug transporter AcrB in R32 and C2 space groups showing both symmetric and asymmetric trimeric assemblies, respectively, supplemented with biochemical investigations, have provided most of the structural basis for a molecular level understanding of the protein structure and mechanisms for substrate uptake and translocation carried out by this 114-kDa inner membrane protein. They suggest that AcrB captures ligands primarily from the periplasm. Substrates can also enter the inner cavity of the transporter from the cytoplasm, but the exact mechanism of this remains undefined. Analysis of the amino acid sequences of AcrB and its homologs revealed the presence of conserved residues at the N-terminus including two phenylalanines which may be exposed to the cytoplasm. Any potential role that these conserved residues may play in function has not been addressed by existing biochemical or structural studies. Since phenylalanine residues elsewhere in the protein have been implicated in ligand binding, we explored the structure of this N-terminal region to investigate structural determinants near the cytoplasmic opening that may mediate drug uptake. Our structure of AcrB in R32 space group reveals an N-terminus loop, reducing the diameter of the central opening to approximately 15 A as opposed to the previously reported value of approximately 30 A for crystal structures in this space group with disordered N-terminus. Recent structures of the AcrB in C2 space group have revealed a helical conformation of this N-terminus but have not discussed its possible implications. We present the crystal structure of AcrB that reveals the structure of the N-terminus containing the conserved residues. We hope that the structural information provides a structural basis for others to design further biochemical investigation of the role of this portion of AcrB in mediating cytoplasmic ligand discrimination and uptake.


Assuntos
Proteínas de Bactérias/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Sequência de Aminoácidos , Transporte Biológico , Sequência Conservada , Cristalização , Cristalografia por Raios X , Citosol/metabolismo , Dados de Sequência Molecular , Preparações Farmacêuticas/metabolismo , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...