Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38396972

RESUMO

Due to growing concerns about environmental pollution from plastic waste, plastic recycling research is gaining momentum. Traditional methods, such as incorporating inorganic particles, increasing cross-linking density with peroxides, and blending with silicone monomers, often improve mechanical properties but reduce flexibility for specific performance requirements. This study focuses on synthesizing silica nanoparticles with vinyl functional groups and evaluating their mechanical performance when used in recycled plastics. Silica precursors, namely sodium silicate and vinyltrimethoxysilane (VTMS), combined with a surfactant, were employed to create pores, increasing silica's surface area. The early-stage introduction of vinyl functional groups prevented the typical post-synthesis reduction in surface area. Porous silica was produced in varying quantities of VTMS, and the synthesized porous silica nanomaterials were incorporated into recycled polyethylene to induce cross-linking. Despite a decrease in surface area with increasing VTMS content, a significant surface area of 883 m2/g was achieved. In conclusion, porous silica with the right amount of vinyl content exhibited improved mechanical performance, including increased tensile strength, compared to conventional porous silica. This study shows that synthesized porous silica with integrated vinyl functional groups effectively enhances the performance of recycled plastics.


Assuntos
Nanopartículas , Nanoestruturas , Silanos , Compostos de Vinila , Dióxido de Silício , Reciclagem , Poluição Ambiental
2.
Int J Mol Sci ; 24(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36835621

RESUMO

Formaldehyde emitted from household products is classified as a hazardous substance that can adversely affect human health. Recently, various studies related to adsorption materials for reducing formaldehyde have been widely reported. In this study, mesoporous and mesoporous hollow silicas with amine functional groups introduced were utilized as adsorption materials for formaldehyde. Formaldehyde adsorption characteristics of mesoporous and mesoporous hollow silicas having well-developed pores were compared based on their synthesis methods-with or without a calcination process. Mesoporous hollow silica synthesized through a non-calcination process had the best formaldehyde adsorption characteristics, followed by mesoporous hollow silica synthesized through a calcination process and mesoporous silica. This is because a hollow structure has better adsorption properties than mesoporous silica due to large internal pores. The specific surface area of mesoporous hollow silica synthesized without a calcination process was also higher than that synthesized with a calcination process, leading to a better adsorption performance. This research suggests a facile synthetic method of mesoporous hollow silica and confirms its noticeable potential as a support for the adsorption of harmful gases.


Assuntos
Aminas , Dióxido de Silício , Humanos , Dióxido de Silício/química , Adsorção , Aminas/química , Formaldeído
3.
Micromachines (Basel) ; 13(6)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35744541

RESUMO

Although mesoporous silica materials have been widely investigated for many applications, most silica materials are made by calcination processes. We successfully developed a convenient method to synthesize mesoporous materials at room temperature. Although the silica materials made by the two different methods, which are the calcination process and the room-temperature process, have similar specific surface areas, the silica materials produced with the room-temperature process have a significantly larger pore volume. This larger pore volume has the potential to attach to functional groups that can be applied to various industrial fields such as CO2 adsorption. This mesoporous silica with a larger pore volume was analyzed by TEM, FT-IR, low angle X-ray diffraction, N2-adsorption analysis, and CO2 adsorption experiments in comparison with the mesoporous silica synthesized with the traditional calcination method.

4.
Micromachines (Basel) ; 12(11)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34832835

RESUMO

To improve the adsorption performance of carbon dioxide, which is considered the main culprit of greenhouse gases, the specific surface area and high pore volume of the adsorbing material should be considered. For a porous material, the performance of carbon dioxide adsorption is determined by the amine groups supporting capacity; the larger the pore volume, the greater the capacity to support the amine groups. In this study, a double-shell mesoporous hollow silica nanomaterial with excellent pore volume and therefore increased amine support capacity was synthesized. A core-shell structure capable of having a hollow shape was synthesized using polystyrene as a core material, and a double-shell mesoporous shape was synthesized by sequentially using two types of surfactants. The synthesized material was subjected to a sintering process of 600 degrees, and the N2 sorption analysis confirmed a specific surface area of 690 m2/g and a pore volume of 1.012 cm3/g. Thereafter, the amine compound was impregnated into the silica nanomaterial, and then, a carbon dioxide adsorption experiment was conducted, which confirmed that compared to the mesoporous hollow silica nanomaterial synthesized as a single shell, the adsorption performance was improved by about 1.36 times.

5.
Environ Monit Assess ; 193(7): 445, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34173069

RESUMO

Total organic carbon (TOC) has vital significance for measuring water quality in river streamflow. The detection of TOC can be considered as an important evaluation because of issues on human health and environmental indicators. This research utilized the novel hybrid models to improve the predictive accuracy of TOC at Andong and Changnyeong stations in the Nakdong River, South Korea. A data pre-processing approach (i.e., complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN)) and evolutionary optimization algorithm (i.e., crow search algorithm (CSA)) were implemented for enhancing the accuracy and robustness of standalone models (i.e., multivariate adaptive regression spline (MARS) and M5Tree). Various water quality indicators (i.e., TOC, potential of Hydrogen (pH), electrical conductivity (EC), dissolved oxygen (DO), water temperature (WT), chemical oxygen demand (COD), and suspended solids (SS)) were utilized for developing the standalone and hybrid models based on three input combinations (i.e., categories 1~3). The developed models were evaluated utilizing the correlation coefficient (CC), root-mean-square error (RMSE), and Nash-Sutcliffe efficiency (NSE). The CEEMDAN-MARS-CSA based on category 2 (C-M-CSA2) model (CC = 0.762, RMSE = 0.570 mg/L, and NSE = 0.520) was the most accurate for predicting TOC at Andong station, whereas the CEEMDAN-MARS-CSA based on category 3 (C-M-CSA3) model (CC = 0.900, RMSE = 0.675 mg/L, and NSE = 0.680) was the best at Changnyeong station.


Assuntos
Monitoramento Ambiental , Rios , Carbono , Humanos , República da Coreia , Qualidade da Água
6.
J Nanosci Nanotechnol ; 20(9): 5683-5685, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32331159

RESUMO

Various surface treatments on zirconia have been reported for dental porcelain veneer. However, it has not been determined which of these treatments provide the highest bond strength. The purpose of this study is to compare the effect of airborne particle abrasion and atmospheric pressure plasma treatment on the shear bond strength between zirconia and dental porcelain veneer. The groups were divided into four groups according to the surface treatment method: the control group, the atmospheric pressure plasma treated group (group P), the airborne particle abrasion group (group A), the atmospheric pressure plasma treated group after the airborne particle abrasion (group AP). Atmospheric pressure plasma was applied on the specimens using a plasma generator (Plasma JET, POLYBIOTECH Co. Ltd., Gwangju, Korea) and airborne-particle abraded with 110 µm. The characteristics of surface treated zirconia were analyzed by 3D-OP, XRD, XPS and contact angle. The shear bond strength was tested using a universal testing machine. The shear bond strength of group P was significantly increased compared to that of the control group (P < 0.05). The shear bond strength of group AP was significantly increased as compared to group A (P < 0.05). There was no significant difference between the group P and group A (P > 0.05). As a result of this study, the atmospheric pressure plasma treatment showed significantly higher shear bond strength than control group, but similar to the airborne particle abrasion, and the atmospheric pressure plasma treatment after the airborne particle abrasion provided the highest shear bond strength. This study demonstrated that application atmospheric pressure plasma treatment on zirconia may be useful for increasing bond strength between zirconia and dental porcelain veneer.


Assuntos
Colagem Dentária , Porcelana Dentária , Pressão Atmosférica , Cerâmica , Teste de Materiais , Microscopia Eletrônica de Varredura , Resistência ao Cisalhamento , Propriedades de Superfície , Zircônio
7.
ACS Appl Mater Interfaces ; 10(31): 26628-26640, 2018 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-30052414

RESUMO

A bioapplicable cargo delivery system requires the following characteristics of biocompatibility, in vivo stability, and selective cargo release at target sites. We introduce herein the microcapsules enclosed with a single-layered shell of gold nanoparticles (AuNPs) mutually connected by an amyloidogenic protein of α-synuclein (αS). The microcapsules were fabricated by producing oil(chloroform)-in-water Pickering emulsions of the αS-encapsulated AuNPs and subsequent molecular engagement of the outlying αS molecules, leading to formidable ß-sheet formation in the presence of chloroform. The wrinkled skin of microcapsules obtained after evaporation of the internal chloroform also reflects robustness of the protein-protein interaction, which was experimentally confirmed by their rheological stability. For the emulsions loaded with rhodamine 6G, their dye release was demonstrated to be controlled by proteases. Along with their photothermal activity, the AuNP-containing microcapsules and their proteolyzed fragments were therefore suggested to be capable of eliminating aberrant cells in the protease-activated pathologically affected areas. Orthogonal cargo loading was also achieved by encapsulating both hydrophobic and hydrophilic substances either directly dissolved in chloroform or prepackaged in inverted micelles, respectively. Microcapsule's functionality was further expanded by localizing quantum dots, magnetic nanoparticles, and antibodies inside or on the surface of the microcapsules. Taken together, these multimodal AuNP microcapsules are suggested to be an ideal cargo carrier system, which could be employed in not only biomedical theranostic applications as they exhibit structural robustness, specific targeting, triggered release, and photothermal activity but also sensor development in general.


Assuntos
Nanopartículas Metálicas , Cápsulas , Ouro , Peptídeo Hidrolases , alfa-Sinucleína
8.
J Nanosci Nanotechnol ; 18(2): 853-855, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29448505

RESUMO

In this study, we examined the effect of ß-tricalcium phosphate (ß-TCP) coating on alkali-treated CP Grade II titanium surface via RF magnetron sputtering on osteoblast like cell (MC3T3-E1) viability and bone formation in rat tibia. The specimens were divided into three groups; commercially pure titanium (control group), alkali-treated titanium with nanofiber structure (NF group) and ß-TCP coating on alkali-treated titanium with nanofiber structure (TNF group). The surface characteristics of specimens were observed under a field emission scanning electron microscope (FE-SEM), and contact angle was measured. The cell viability was assessed in vitro after 1 day, 3 days and 7 days. Implants of 2.0 mm diameter and 5.0 mm length were inserted into the tibia of rats. After 4 wks, the histomorphometric analysis was performed. Group NF and group TNF showed improved hydrophilicity of Ti. Group TNF showed significantly higher cell viability (P < 0.05) after 7 days. The bone to implant contact (BIC) ratio of the control group, NF group, and TNF group were 32.3%, 35.5%, and 63.9%, respectively. The study results suggested that ß-TCP coated alkali-treated titanium surface via RF magnetron sputtering might be effective in implant dentistry due to enhanced hydrophilicity, improved cell response, and better osseointegration.


Assuntos
Desenvolvimento Ósseo , Fosfatos de Cálcio , Nanofibras , Osseointegração , Titânio , Animais , Materiais Revestidos Biocompatíveis , Implantes Dentários , Microscopia Eletrônica de Varredura , Propriedades de Superfície
9.
J Nanosci Nanotechnol ; 18(2): 1403-1405, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29448599

RESUMO

The aim of this study was to determine the effect of hydroxyapatite (HA) coating on titanium dioxide (TiO2) nanotube by sol-gel process on viability of osteoblast like cell (MC3T3-E1) and bone formation in rat tibia. Specimens were divided into three groups including commercially pure titanium (control group), TiO2 nanotubes (group N), and HA coated TiO2 nanotubes (group HN). Surface characteristics were determined using field emission scanning electron microscope (FE-SEM; S-4700, Hitachi, Japan) and contact angles were measured. Cell viability was investigated in vitro after 1 day, 3 days, and 7 days of incubation. Implants (2.0 mm in diameter and 5.0 mm in length) were inserted into the tibia of rats. After 4 weeks, histomorphometric analysis was performed. Both N and HN groups showed enhanced hydrophilicity compared to control group. After 7 days of implantation, group HN showed higher cell viability with marginal significance (0.05 < P < 0.1). Bone to implant contact (BIC) ratio in the control group, group N, and group HN were 32.5%, 33.1%, and 43.8%, respectively. Results of this study showed that HA coated TiO2 nanotube using sol-gel process could be used to enhance hydrophilicity and improve osseointegration of dental implant surface.

10.
Sci Rep ; 7(1): 17945, 2017 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-29263416

RESUMO

(-)-Epigallocatechin gallate (EGCG), the major component of green tea, has been re-evaluated with α-synuclein (αS), a pathological constituent of Parkinson's disease, to elaborate its therapeutic value. EGCG has been demonstrated to not only induce the off-pathway 'compact' oligomers of αS as suggested previously, but also drastically enhance the amyloid fibril formation of αS. Considering that the EGCG-induced amyloid fibrils could be a product of on-pathway SDS-sensitive 'transient' oligomers, the polyphenol effect on the transient 'active' oligomers (AOs) was investigated. By facilitating the fibril formation and thus eliminating the toxic AOs, EGCG was shown to suppress the membrane disrupting radiating amyloid fibril formation on the surface of liposomal membranes and thus protect the cells which could be readily affected by AOs. Taken together, EGCG has been suggested to exhibit its protective effect against the αS-mediated cytotoxicity by not only producing the off-pathway 'compact' oligomers, but also facilitating the conversion of 'active' oligomers into amyloid fibrils.


Assuntos
Catequina/análogos & derivados , Membrana Celular/efeitos dos fármacos , alfa-Sinucleína/farmacologia , Amiloide/efeitos dos fármacos , Amiloide/ultraestrutura , Animais , Catequina/farmacologia , Modelos Animais de Doenças , Drosophila melanogaster , Eletroforese em Gel de Poliacrilamida , Microscopia Eletrônica de Transmissão , Doença de Parkinson/tratamento farmacológico , alfa-Sinucleína/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...