Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemphyschem ; 18(2): 238-244, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-27792851

RESUMO

Palladium-platinum bimetallic catalysts supported on alumina with palladium/platinum molar ratios ranging from 0.25 to 4 are studied in dry lean methane combustion in the temperature range of 200 to 500 °C. Platinum addition decreases the catalyst activity, which cannot be explained by the decrease in dispersion or the structure sensitivity of the reaction. In situ X-ray absorption near-edge structure and extended X-ray absorption fine structure spectroscopy measurements have been conducted for monometallic Pd, Pt, and 2:1 Pd-Pt catalysts. Monometallic palladium is fully oxidized in the full temperature range, whereas platinum addition promotes palladium reduction, even in a reactive oxidizing environment. The Pd/PdO weight ratio in bimetallic Pd-Pt 2:1 catalysts decreases from 98/2 to 10/90 in the 200-500 °C temperature range under the reaction conditions. Thus, platinum promotes the formation of the reduced palladium phase with a significantly lower activity than that of oxidized palladium. The study sheds light on the effect of platinum on the state of the active palladium surface under low-temperature dry lean methane combustion conditions, which is important for methane-emission control devices.

2.
Phys Chem Chem Phys ; 16(24): 12407-14, 2014 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-24827005

RESUMO

Anisotropic metal nanoparticles have found use in a variety of plasmonic applications because of the large near-field enhancements associated with them; however, the very features that give rise to these enhancements (e.g., sharply curved edges and tips) often have high surface energies and are easily degraded. This paper describes the stability and degradation mechanisms of triangular silver, gold-coated silver, and gold nanoprisms upon exposure to a wide variety of adverse conditions, including halide ions, thiols, amines and elevated temperatures. The silver nanoprisms were immediately and irreversibly degraded under all of the conditions studied. In contrast, the core-shell Ag@Au nanoprisms were less susceptible to etching by chlorides and bromides, but were rapidly degraded by iodides, amines and thiols by a different degradation pathway. Only the pure gold nanoprisms were stable to all of the conditions tested. These results have important implications for the suitability of triangular nanoprisms in many applications; this is particularly true in biological or environmental fields, where the nanoparticles would inevitably be exposed to a wide variety of chemical stimuli.

3.
ACS Appl Mater Interfaces ; 5(21): 11044-51, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24102234

RESUMO

Recently, plasmonic metal nanoparticles have been shown to be very effective in increasing the light harvesting efficiency (LHE) of dye-sensitized solar cells (DSSCs). Most commonly, spherical nanoparticles composed of silver or gold are used for this application; however, the localized surface plasmon resonances of these isotropic particles have maxima in the 400-550 nm range, limiting any plasmonic enhancements to wavelengths below 600 nm. Herein, we demonstrate that the incorporation of anisotropic, triangular silver nanoprisms in the photoanode of DSSCs can dramatically increase the LHE in the red and near-infrared regions. Core-shell Ag@SiO2 nanoprisms were synthesized and incorporated in various quantities into the titania pastes used to prepare the photoanodes. This optimization led to an overall 32 ± 17% increase in the power conversion efficiency (PCE) of cells made using 0.05% (w/w) of the Ag@SiO2 composite. Measurements of the incident photon-to-current efficiency provided further evidence that this increase is a result of improved light harvesting in the red and near-infrared regions. The effect of shell thickness on nanoparticle stability was also investigated, and it was found that thick (30 nm) silica shells provide the best protection against corrosion by the triiodide-containing electrolyte, while still enabling large improvements in PCE to be realized.

4.
Langmuir ; 26(12): 9575-83, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20429522

RESUMO

Vibrational spectroscopic studies of N719 dye-adsorbed TiO(2) films have been carried out by using SERRS, ATR-FTIR, and confocal Raman imaging. The high wavenumber region (3000-4000 cm(-1)) of dye adsorbed TiO(2) is analyzed via Raman and IR spectroscopy to investigate the role of surface hydroxyl groups in the anchoring mode. As a complementary technique, confocal Raman imaging is employed to study the distribution features of key dye groups (COO-, bipyridine, and C=O) on the anatase surface. Sensitized TiO(2) films made from two different nanocrystalline anatase powders are investigated: a commercial one (Dyesol) and our synthetic variety produced through aqueous synthesis. It is proposed the binding of the N719 dye to TiO(2) to occur through two neighboring carboxylic acid/carboxylate groups via a combination of bidentate-bridging and H-bonding involving a donating group from the N719 (and/or Ti-OH) units and acceptor from the Ti-OH (and/or N719) groups. The Raman imaging distribution of COO(-)(sym) on TiO(2) was used to show the covalent bonding, while the distribution of C=O mode was applied to observe the electrostatically bonded groups.

5.
J Am Chem Soc ; 130(20): 6534-43, 2008 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-18419121

RESUMO

Synthesis of semiconductor nanoparticles with uniform shapes, sizes, and compositions in series with a gradual size reduction has not been achieved for two-dimensional molecular sheets. We report a large-scale (>2.6 g) synthesis of 0.75-nm-thick diamond-shape lepidocrocite-type titanate molecular sheets with the sizes decreasing from (27.3, 19.1) to (7.7, 5.5), where the numbers in parentheses represent the long and short diagonal lengths, respectively, in nm. This is the first example of synthesizing semiconductor nanoparticles in series with the dimensionality reduction from two to zero, without coating the surfaces with surface-passivating ligands. The titanate molecular sheets showed three exciton-absorption bands in the 4.0-6.5 eV region, the absorption energies of which increased with decreasing the area. Contrary to the common belief, the per-unit cell oscillator strengths gradually increased with increasing area and the per-particle oscillator strengths increased in proportion to the area. The average reduced exciton masses along the two diagonal axes were 0.10 and 0.11 m e, respectively, which were much smaller than those of bulk titanates (by 60-130 times). The estimated average Bohr radii along the two-diagonal axes were 4.8 and 4.3 nm, respectively.


Assuntos
Nanopartículas Metálicas/química , Nanoestruturas/química , Titânio/química , Compostos Férricos/química , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Teoria Quântica , Semicondutores , Análise Espectral Raman , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...