Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 28(5): 2890-6, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22221080

RESUMO

ZnO quantum dots dispersed in a silica matrix were synthesized from a TEOS:Zn(NO(3))(2) solution by a one-step aerosol-gel method. It was demonstrated that the molar concentration ratio of Zn to Si (Zn/Si) in the aqueous solution was an efficient parameter with which to control the size, the degree of agglomeration, and the microstructure of ZnO quantum dots (QDs) in the SiO(2) matrix. When Zn/Si ≤ 0.5, unaggregated quantum dots as small as 2 nm were distributed preferentially inside SiO(2) spheres. When Zn/Si ≥ 1.0, however, ZnO QDs of ∼7 nm were agglomerated and reached the SiO(2) surface. When decreasing the ratio of the Zn/Si, a blue shift in the band gap of ZnO was observed from the UV/Visible absorption spectra, representing the quantum size effect. The photoluminescence emission spectra at room temperature denoted two wide peaks of deep-level defect-related emissions at 2.2-2.8 eV. When decreasing Zn/Si, the first peak at ∼2.3 eV was blue-shifted in keeping with the decrease in the size of the QDs. Interestingly, the second visible peak at 2.8 eV disappeared in the surface-exposed ZnO QDs when Zn/Si ≥ 1.0.

2.
J Colloid Interface Sci ; 344(2): 353-61, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20132942

RESUMO

It has been a big challenge to explore a direct relation of experimental parameters such as pH, electrolyte concentration, particle size, and temperature with the final structures of aggregates, because Monte Carlo simulations have been performed on the basis of arbitrarily chosen sticking probability. We attempted to incorporate colloidal theory to Monte Carlo simulations for two model systems of CuO- and SiO(2)-water systems, so as to resolve this difficulty. Conducting three-dimensional off-lattice MC simulations at various pHs for both systems, we investigated effects of pH on fractal structures of aggregates, encompassing the whole aggregation regime from diffusion-limited cluster-cluster aggregation to reaction-limited cluster-cluster aggregation. Moreover, developing a functional analysis, we found an explicit correlation between experimental parameters, sticking probability, and the fractal dimension of aggregates for both systems.


Assuntos
Cobre/química , Fractais , Método de Monte Carlo , Dióxido de Silício/química , Coloides/química , Difusão , Concentração de Íons de Hidrogênio , Modelos Moleculares , Tamanho da Partícula , Propriedades de Superfície , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...