Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Res ; 32(4): 269-274, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27818728

RESUMO

The potency of influenza vaccine is determined based on its hemagglutinin (HA) content. In general, single radial immunodiffusion (SRID) assay has been utilized as the standard method to measure HA content. However, preparation of reagents for SRID such as antigen and antibody takes approximately 2~3 months, which causes delays in the development of influenza vaccine. Therefore, quantification of HA content by other alternative methods is required. In this study, we measured HA contents of H1N1 antigen and H1N1 influenza vaccine by reverse phase-high performance liquid chromatography (RP-HPLC) methods. The presence of HA1 and HA2 was investigated by silver staining and Western blot assay. In addition, accuracy and repeatability of HA measurement by RP-HPLC were evaluated. Comparison of HA concentration by SRID and RP-HPLC revealed a precise correlation between the two methods. Our results suggest that RP-HPLC assay can replace SRID in the event of a pandemic flu outbreak for rapid vaccine development.

2.
Cancer Res ; 65(10): 3986-92, 2005 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-15899786

RESUMO

Kinase suppressor of Ras1 (KSR1) interacts with several mitogen-activated protein (MAP) kinase pathway components, including Raf, MAP/extracellular signal-regulated kinase (ERK) kinase (MEK), and ERK, and acts as a positive regulator of the Ras signaling cascade. Previous studies have shown that exposure of cells to the anticancer agent cisplatin (cis-diamminedichloroplatinum, CDDP) is associated with changes in multiple signal transduction pathways, including c-Jun-NH2-kinase, ERK, and p38 pathways. Moreover, ERK activation has been linked to changes in cell survival following CDDP treatment. In this report, we have examined the effects of KSR1 expression on the sensitivity of cells to CDDP-induced apoptosis. Loss of KSR1 expression in mouse embryo fibroblasts (MEFs) derived from KSR1 knockout mice (KSR-/- MEF) is associated with decreased CDDP-induced ERK activation and increased resistance to CDDP-induced apoptosis compared with wild-type MEFs (KSR+/+ MEF). Furthermore, transduction of KSR-/- MEFs and MCF-7 breast cancer cells with wild-type KSR1 resulted in enhanced ERK activation following CDDP exposure and increased sensitivity to CDDP. In addition, inhibition of ERK activation by exposing MEFs to the MEK1/2-specific inhibitors PD98059 and U0126 protected both KSR+/+ and KSR-/- MEFs cells from CDDP-induced apoptosis. These results indicate that KSR1-mediated regulation of ERK activity represents a novel determinant of CDDP sensitivity of cancer cells.


Assuntos
Cisplatino/farmacologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases/biossíntese , Animais , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Embrião de Mamíferos , Ativação Enzimática/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases/deficiência , Proteínas Quinases/genética
3.
Biochem Biophys Res Commun ; 320(3): 945-50, 2004 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-15240140

RESUMO

The von Hippel-Lindau (VHL) is a known tumor suppressor that binds to alpha-subunits of hypoxia-inducible factors and induces ubiquitin-mediated degradation of the protein in an oxygen-dependent manner. VHL is also involved in the regulation of tumor angiogenesis, glycolysis, cell cycle regulation, and apoptosis. In the present study, we showed that ectopic expression of VHL induces apoptosis in renal cell carcinoma 786-O cells which contain only the mutant VHL, evidenced by TUNEL assay and DAPI staining. Furthermore, biochemical studies indicated that expression of VHL in 786-O cells results in both PARP and CPP32 cleavage, suggesting that VHL-induced apoptosis in 786-O cells is caspase dependent. Moreover, we also observed that apoptosis induced by ectopic VHL expression was associated with up-regulation of p27 as well as Bax, implicating the roles of these two proteins in VHL-induced apoptosis. The up-regulation of p27 and Bax by VHL was specific since we did not detect any changes in the level of other apoptotic factors including Fas and Bcl2 by the expression of VHL. We next examined the effect of VHL expression on the tumor growth of 786-O renal cell carcinoma cells in nude mouse. The results showed that injection of Ad.VHL adenovirus regresses the tumor growth of 786-O cells in nude mouse. The analysis by TUNEL assay as well as DAPI staining of 786-O tumors injected with Ad.VHL showed clear evidence of apoptosis. These results suggest that ectopic VHL expression induces apoptotic response in 786-O VHL mutant cells both in vitro and in vivo.


Assuntos
Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Proteínas Proto-Oncogênicas c-bcl-2 , Animais , Apoptose , Divisão Celular , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Camundongos , Camundongos Nus , Proteínas Proto-Oncogênicas/metabolismo , Proteína X Associada a bcl-2
4.
Biochem Biophys Res Commun ; 320(1): 138-44, 2004 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-15207713

RESUMO

The INK4A/ARF locus on chromosome 9 is a tumor suppressor gene frequently mutated in human cancers. In order to study the effects of p14ARF expression in tumor cells, we constructed a recombinant adenovirus containing p14ARF cDNA (Adp14ARF). Adp14ARF infection of U2OS osteosarcoma cells which has wild type p53 and mutant p14ARF revealed high levels of p14 (ARF) expression within 24h. In addition, Adp14ARF-mediated expressing of p14 (ARF) was associated with increased levels of p53, p21, and mdm2 protein. Growth inhibition assays following Adp14ARF infection demonstrated that the growth of U2OS cells was inhibited relative to infection with control virus. Furthermore, TUNEL analysis as well as PARP cleavage assays demonstrated that Adp14ARF infection was associated with increased apoptosis in U2OS cell line and that it was associated with Adp14ARF induced overexpression of Fas and Fas-L. Addition of Fas-L neutralizing antibody NOK-1 decreased Adp14-mediated cell death, indicating that p14 (ARF) induction of the Fas pathway is associated with increased apoptosis. The finding that Adp14ARF infection did not induce Fas expression in U2OS/E6 and MCF/E6 cells suggests that wild type p53 expression may be necessary for Adp14ARF-mediated induction of Fas. The observation that overexpression of p53 by Adp53 infection in MCF-7 does not induce increased Fas protein levels nor apoptotic cell death suggests that p53 overexpression is required but not sufficient enough for apoptosis. These studies suggest there are other mechanisms other than induction of p53 in ARF-mediated apoptosis and gene therapy using Adp14ARF may be a promising treatment option for human cancers containing wild type p53 and mutant or deleted p14 expression.


Assuntos
Infecções por Adenoviridae/genética , Adenoviridae/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Osteossarcoma/genética , Osteossarcoma/metabolismo , Proteína Supressora de Tumor p14ARF/metabolismo , Receptor fas/metabolismo , Adenoviridae/crescimento & desenvolvimento , Infecções por Adenoviridae/metabolismo , Apoptose , Neoplasias da Mama/patologia , Neoplasias da Mama/virologia , Ciclo Celular , Linhagem Celular Tumoral , Vetores Genéticos/genética , Humanos , Osteossarcoma/patologia , Osteossarcoma/virologia
5.
Drug Discov Today ; 6(23): 1231-1237, 2001 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-11722875

RESUMO

The enzyme telomerase has a key role in controlling the lifespan of human cells. It is absent from most somatic tissues but is reactivated in more than 85% of cancers, making the enzyme ideal as a marker of cancer cells and as a therapeutic target. In the context of normal human cells, the enzyme can extend cellular lifespan without causing cancer-associated changes or altering phenotypic properties. This capability could solve a major obstacle in the use of normal human cells for tissue engineering, that is, the induction of cellular senescence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...