Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 8(11)2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37129971

RESUMO

Alloreactivity can drive autoimmune syndromes. After allogeneic hematopoietic stem cell transplantation (allo-HCT), chronic graft-versus-host disease (cGVHD), a B cell-associated autoimmune-like syndrome, commonly occurs. Because donor-derived B cells continually develop under selective pressure from host alloantigens, aberrant B cell receptor (BCR) activation and IgG production can emerge and contribute to cGVHD pathobiology. To better understand molecular programing of B cells in allo-HCT, we performed scRNA-Seq analysis on high numbers of purified B cells from patients. An unsupervised analysis revealed 10 clusters, distinguishable by signature genes for maturation, activation, and memory. Within the memory B cell compartment, we found striking transcriptional differences in allo-HCT patients compared with healthy or infected individuals, including potentially pathogenic atypical B cells (ABCs) that were expanded in active cGVHD. To identify intrinsic alterations in potentially pathological B cells, we interrogated all clusters for differentially expressed genes (DEGs) in active cGVHD versus patients who never had signs of immune tolerance loss (no cGVHD). Active cGVHD DEGs occurred in both naive and BCR-activated B cell clusters. Remarkably, some DEGs occurred across most clusters, suggesting common molecular programs that may promote B cell plasticity. Our study of human allo-HCT and cGVHD provides understanding of altered B cell memory during chronic alloantigen stimulation.


Assuntos
Síndrome de Bronquiolite Obliterante , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Humanos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Linfócitos B , Receptores de Antígenos de Linfócitos B/genética
2.
J Biomech ; 154: 111623, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37210923

RESUMO

Over the past half-century, musculoskeletal simulations have deepened our knowledge of human and animal movement. This article outlines ten steps to becoming a musculoskeletal simulation expert so you can contribute to the next half-century of technical innovation and scientific discovery. We advocate looking to the past, present, and future to harness the power of simulations that seek to understand and improve mobility. Instead of presenting a comprehensive literature review, we articulate a set of ideas intended to help researchers use simulations effectively and responsibly by understanding the work on which today's musculoskeletal simulations are built, following established modeling and simulation principles, and branching out in new directions.


Assuntos
Movimento , Animais , Humanos , Simulação por Computador
3.
Gait Posture ; 99: 1-8, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36283301

RESUMO

BACKGROUND: Spina bifida, a neurological defect, can result in lower-limb muscle weakness. Altered ambulation and reduced musculoskeletal loading can yield decreased bone strength in individuals with spina bifida, yet individuals who remain ambulatory can exhibit normal bone outcomes. RESEARCH QUESTION: During walking, how do lower-limb joint kinematics and moments and tibial forces in independently ambulatory children with spina bifida differ from those of children with typical development? METHODS: We retrospectively analyzed data from 16 independently ambulatory children with spina bifida and 16 children with typical development and confirmed that tibial bone strength was similar between the two groups. Plantar flexor muscle strength was measured by manual muscle testing, and 14 of the children with spina bifida wore activity monitors for an average of 5 days. We estimated tibial forces at the knee and ankle using motion capture data and musculoskeletal simulations. We used Statistical Parametric Mapping t-tests to compare lower-limb joint kinematic and kinetic waveforms between the groups with spina bifida and typical development. Within the group with spina bifida, we examined relationships between plantar flexor muscle strength and peak tibial forces by calculating Spearman correlations. RESULTS: Activity monitors from the children with spina bifida reported typical daily steps (9656 [SD 3095]). Despite slower walking speeds (p = 0.004) and altered lower-body kinematics (p < 0.001), children with spina bifida had knee and ankle joint moments and forces similar to those of children with typical development, with no detectable differences during stance. Plantar flexor muscle weakness was associated with increased compressive knee force (p = 0.002) and shear ankle force (p = 0.009). SIGNIFICANCE: High-functioning, independently ambulatory children with spina bifida exhibited near-typical tibial bone strength and near-typical step counts and tibial load magnitudes. Our results suggest that the tibial forces in this group are of sufficient magnitudes to support the development of normal tibial bone strength.


Assuntos
Articulação do Tornozelo , Disrafismo Espinal , Criança , Humanos , Articulação do Tornozelo/fisiologia , Estudos Retrospectivos , Articulação do Joelho/fisiologia , Caminhada/fisiologia , Fenômenos Biomecânicos , Disrafismo Espinal/complicações , Debilidade Muscular/etiologia
4.
Environ Microbiol ; 22(11): 4702-4717, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32840945

RESUMO

Diverse communities of fungi and bacteria in deadwood mediate wood decay. While rates of decomposition vary greatly among woody species and spatially distinct habitats, the relative importance of these factors in structuring microbial communities and whether these shift over time remains largely unknown. We characterized fungal and bacterial diversity within pieces of deadwood that experienced 6.3-98.8% mass loss while decaying in common garden 'rotplots' in a temperate oak-hickory forest in the Ozark Highlands, MO, USA. Communities were isolated from 21 woody species that had been decomposing for 1-5 years in spatially distinct habitats at the landscape scale (top and bottom of watersheds) and within stems (top and bottom of stems). Microbial community structure varied more strongly with wood traits than with spatial locations, mirroring the relative role of these factors on decay rates on the same pieces of wood even after 5 years. Co-occurring fungal and bacterial communities persistently influenced one another independently from their shared environmental conditions. However, the relative influence of wood construction versus spatial locations differed between fungi and bacteria, suggesting that life history characteristics of these clades structure diversity differently across space and time in decomposing wood.


Assuntos
Microbiota/fisiologia , Madeira/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Carya/microbiologia , Florestas , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Interações Microbianas , Missouri , Quercus/microbiologia , Fatores de Tempo , Madeira/classificação
5.
Glob Chang Biol ; 26(2): 864-875, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31628697

RESUMO

Whether global change will drive changing forests from net carbon (C) sinks to sources relates to how quickly deadwood decomposes. Because complete wood mineralization takes years, most experiments focus on how traits, environments and decomposer communities interact as wood decay begins. Few experiments last long enough to test whether drivers change with decay rates through time, with unknown consequences for scaling short-term results up to long-term forest ecosystem projections. Using a 7 year experiment that captured complete mineralization among 21 temperate tree species, we demonstrate that trait effects fade with advancing decay. However, wood density and vessel diameter, which may influence permeability, control how decay rates change through time. Denser wood loses mass more slowly at first but more quickly with advancing decay, which resolves ambiguity about the after-life consequences of this key plant functional trait by demonstrating that its effect on decay depends on experiment duration and sampling frequency. Only long-term data and a time-varying model yielded accurate predictions of both mass loss in a concurrent experiment and naturally recruited deadwood structure in a 32-year-old forest plot. Given the importance of forests in the carbon cycle, and the pivotal role for wood decay, accurate ecosystem projections are critical and they require experiments that go beyond enumerating potential mechanisms by identifying the temporal scale for their effects.


Assuntos
Ecossistema , Madeira , Ciclo do Carbono , Florestas , Árvores
6.
Ecology ; 100(9): e02790, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31228251

RESUMO

Environmental forces and biotic interactions, both positive and negative, structure ecological communities, but their relative roles remain obscure despite strong theory. For instance, ecologically similar species, based on the principle of limiting similarity, are expected to be most competitive and show negative interactions. Specious communities that assemble along broad environmental gradients afford the most power to test theory, but the communities often are difficult to quantify. Microbes, specifically fungal endophytes of wood, are especially suited for testing community assembly theory because they are relatively easy to sample across a comprehensive range of environmental space with clear axes of variation. Moreover, endophytes mediate key forest carbon cycle processes, and although saprophytic fungi from dead wood typically compete, endophytic fungi in living wood may enhance success through cooperative symbioses. To classify interactions within endophyte communities, we analyzed fungal DNA barcode variation across 22 woody plant species growing in woodlands near Richmond, New South Wales, Australia. We estimated the response of endophytes to the measured wood environment (i.e., 11 anatomical and chemical wood traits) and each other using latent-variable models and identified recurrent communities across wood environments using model-based classification. We used this information to evaluate whether (1) co-occurrence patterns are consistent with strong competitive exclusion, and (2) a priori classifications by trophic mode and phylum distinguish taxa that are more likely to have positive vs. negative associations under the principle of limiting similarity. Fungal endophytes were diverse (mean = 140 taxa/sample), with differences in community composition structured by wood traits. Variation in wood water content and carbon concentration were associated with especially large community shifts. Surprisingly, after accounting for wood traits, fungal species were still more than three times more likely to have positive than negative co-occurrence patterns. That is, patterns consistent with strong competitive exclusion were rare, and positive interactions among fungal endophytes were more common than expected. Confirming the frequency of positive vs. negative interactions among fungal taxa requires experimental tests, and our findings establish clear paths for further study. Evidence to date intriguingly suggests that, across a wide range of wood traits, cooperation may outweigh combat for these fungi.


Assuntos
Endófitos , Madeira , Austrália , DNA Fúngico , Ecossistema , Fungos
7.
Ecosphere ; 9(10): 1-13, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38357012

RESUMO

Invasive plant species can alter critical ecosystem processes including nitrogen transformations, but it is often difficult to anticipate where in an invaded landscape, these effects will occur. Our predictive ability lags because we lack a framework for understanding the multiple pathways through which environmental conditions mediate invader impacts. Here, we present a framework using structural equation modeling to evaluate the impact of an invasive grass, Microstegium vimineum (M.v.), on nitrogen cycling based on a series of invaded sites that varied in invader biomass and non-M.v. understory biomass, tree basal area, light availability, and soil conditions. Unlike previous studies, we did not find an overall pattern of elevated nitrate concentrations or higher nitrification rates in M.v.-invaded areas. We found that reference plot conditions mediated differences in mineralization between paired invaded and reference plots at each site through indirect (via M.v. biomass), direct, and interactive pathways; however, the strongest pathways were independent of M.v. biomass. For example, sites with low reference soil nitrate and high non-M.v. understory biomass tended to have faster mineralization at 5-15 cm in invaded plots. These findings suggest that more attention to reference conditions is needed to understand the impact of invasive species on soil nitrogen cycling and other ecosystem processes and that the greatest impacts will not necessarily be where the invader is most abundant.

8.
New Phytol ; 213(1): 128-139, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27501517

RESUMO

Many exotic species have little apparent impact on ecosystem processes, whereas others have dramatic consequences for human and ecosystem health. There is growing evidence that invasions foster eutrophication. We need to identify species that are harmful and systems that are vulnerable to anticipate these consequences. Species' traits may provide the necessary insights. We conducted a global meta-analysis to determine whether plant leaf and litter functional traits, and particularly leaf and litter nitrogen (N) content and carbon: nitrogen (C : N) ratio, explain variation in invasive species' impacts on soil N cycling. Dissimilarity in leaf and litter traits among invaded and noninvaded plant communities control the magnitude and direction of invasion impacts on N cycling. Invasions that caused the greatest increases in soil inorganic N and mineralization rates had a much greater litter N content and lower litter C : N in the invaded than the reference community. Trait dissimilarities were better predictors than the trait values of invasive species alone. Quantifying baseline community tissue traits, in addition to those of the invasive species, is critical to understanding the impacts of invasion on soil N cycling.


Assuntos
Espécies Introduzidas , Ciclo do Nitrogênio , Folhas de Planta/fisiologia , Característica Quantitativa Herdável , Nitratos/análise , Fixação de Nitrogênio , Compostos Orgânicos/análise , Solo/química , Especificidade da Espécie
9.
Oecologia ; 170(2): 457-65, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22526935

RESUMO

Understanding the mechanisms by which invasive plants maintain dominance is essential to achieving long-term restoration goals. While many reports have suggested invasive plants alter resource availability, experimental tests of feedbacks between invasive plants and soil resources are lacking. We used field observations and experimental manipulations to test if the invasive grass Microstegium vimineum both causes and benefits from altered soil nitrogen (N) cycling. To quantify M. vimineum effects on N dynamics, we compared inorganic N pools and nitrification rates in 20 naturally invaded and uninvaded plots across a range of mixed hardwood forests, and in experimentally invaded and uninvaded common garden plots. Potential nitrification rates were 142 and 63 % greater in invaded than uninvaded plots in forest and common garden soils, respectively. As a result, soil nitrate was the dominant form of inorganic N during peak M. vimineum productivity in both studies. To determine the response of M. vimineum to altered nitrogen availability, we manipulated the dominant N form (nitrate or ammonium) in greenhouse pots containing M. vimineum alone, M. vimineum with native species, and native species alone. M. vimineum productivity was highest in monocultures receiving nitrate; in contrast, uninvaded native communities showed no response to N form. Notably, the positive response of M. vimineum to nitrate was not apparent when grown in competition with natives, suggesting an invader density threshold is required before positive feedbacks occur. Collectively, our results demonstrate that persistence of invasive plants can be promoted by positive feedbacks with soil resources but that the magnitude of feedbacks may depend on interspecific interactions.


Assuntos
Espécies Introduzidas , Ciclo do Nitrogênio , Poaceae/crescimento & desenvolvimento , Poaceae/metabolismo , Densidade Demográfica , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...