Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Astron ; 7(2): 170-181, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845884

RESUMO

Without a protective atmosphere, space-exposed surfaces of airless Solar System bodies gradually experience an alteration in composition, structure and optical properties through a collective process called space weathering. The return of samples from near-Earth asteroid (162173) Ryugu by Hayabusa2 provides the first opportunity for laboratory study of space-weathering signatures on the most abundant type of inner solar system body: a C-type asteroid, composed of materials largely unchanged since the formation of the Solar System. Weathered Ryugu grains show areas of surface amorphization and partial melting of phyllosilicates, in which reduction from Fe3+ to Fe2+ and dehydration developed. Space weathering probably contributed to dehydration by dehydroxylation of Ryugu surface phyllosilicates that had already lost interlayer water molecules and to weakening of the 2.7 µm hydroxyl (-OH) band in reflectance spectra. For C-type asteroids in general, this indicates that a weak 2.7 µm band can signify space-weathering-induced surface dehydration, rather than bulk volatile loss.

2.
Sci Adv ; 8(46): eabq3925, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36383648

RESUMO

Direct links between carbonaceous chondrites and their parent bodies in the solar system are rare. The Winchcombe meteorite is the most accurately recorded carbonaceous chondrite fall. Its pre-atmospheric orbit and cosmic-ray exposure age confirm that it arrived on Earth shortly after ejection from a primitive asteroid. Recovered only hours after falling, the composition of the Winchcombe meteorite is largely unmodified by the terrestrial environment. It contains abundant hydrated silicates formed during fluid-rock reactions, and carbon- and nitrogen-bearing organic matter including soluble protein amino acids. The near-pristine hydrogen isotopic composition of the Winchcombe meteorite is comparable to the terrestrial hydrosphere, providing further evidence that volatile-rich carbonaceous asteroids played an important role in the origin of Earth's water.

3.
Sci Adv ; 7(25)2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34144979

RESUMO

Both the Chicxulub and Boltysh impact events are associated with the K-Pg boundary. While Chicxulub is firmly linked to the end-Cretaceous mass extinction, the temporal relationship of the ~24-km-diameter Boltysh impact to these events is uncertain, although it is thought to have occurred 2 to 5 ka before the mass extinction. Here, we conduct the first direct geochronological comparison of Boltysh to the K-Pg boundary. Our 40Ar/39Ar age of 65.39 ± 0.14/0.16 Ma shows that the impact occurred ~0.65 Ma after the mass extinction. At that time, the climate was recovering from the effects of the Chicxulub impact and Deccan trap flood volcanism. This age shows that Boltysh has a close temporal association with the Lower C29n hyperthermal recorded by global sediment archives and in the Boltysh crater lake sediments. The temporal coincidence raises the possibility that even a small impact event could disrupt recovery of the Earth system from catastrophic events.

4.
Meteorit Planet Sci ; 55(5): 1103-1115, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32999586

RESUMO

Plagioclase feldspar is one of the most common rock-forming minerals on the surfaces of the Earth and other terrestrial planetary bodies, where it has been exposed to the ubiquitous process of hypervelocity impact. However, the response of plagioclase to shock metamorphism remains poorly understood. In particular, constraining the initiation and progression of shock-induced amorphization in plagioclase (i.e., conversion to diaplectic glass) would improve our knowledge of how shock progressively deforms plagioclase. In turn, this information would enable plagioclase to be used to evaluate the shock stage of meteorites and terrestrial impactites, whenever they lack traditionally used shock indicator minerals, such as olivine and quartz. Here, we report on an electron backscatter diffraction (EBSD) study of shocked plagioclase grains in a metagranite shatter cone from the central uplift of the Manicouagan impact structure, Canada. Our study suggests that, in plagioclase, shock amorphization is initially localized either within pre-existing twins or along lamellae, with similar characteristics to planar deformation features (PDFs) but that resemble twins in their periodicity. These lamellae likely represent specific crystallographic planes that undergo preferential structural failure under shock conditions. The orientation of preexisting twin sets that are preferentially amorphized and that of amorphous lamellae is likely favorable with respect to scattering of the local shock wave and corresponds to the "weakest" orientation for a specific shock pressure value. This observation supports a universal formation mechanism for PDFs in silicate minerals.

5.
Sci Adv ; 4(5): eaap8306, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29806017

RESUMO

Martian meteorite Northwest Africa (NWA) 7034 and its paired stones are the only brecciated regolith samples from Mars with compositions that are representative of the average martian crust. These samples therefore provide a unique opportunity to constrain the processes of metamorphism and alteration in the martian crust, which we have investigated via U-Pu/Xe, 40Ar/39Ar, and U-Th-Sm/He chronometry. U-Pu/Xe ages are comparable to previously reported Sm-Nd and U-Pb ages obtained from NWA 7034 and confirm an ancient (>4.3 billion years) age for the source lithology. After almost 3000 million years (Ma) of quiescence, the source terrain experienced several hundred million years of thermal metamorphism recorded by the K-Ar system that appears to have varied both spatially and temporally. Such protracted metamorphism is consistent with plume-related magmatism and suggests that the source terrain covered an areal extent comparable to plume-fed edifices (hundreds of square kilometers). The retention of such expansive, ancient volcanic terrains in the southern highlands over billions of years suggests that formation of the martian crustal dichotomy, a topographic and geophysical divide between the heavily cratered southern highlands and smoother plains of the northern lowlands, likely predates emplacement of the NWA 7034 source terrain-that is, it formed within the first ~100 Ma of planetary formation.

6.
Nat Commun ; 8(1): 640, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28974682

RESUMO

Mars hosts the solar system's largest volcanoes. Although their size and impact crater density indicate continued activity over billions of years, their formation rates are poorly understood. Here we quantify the growth rate of a Martian volcano by 40Ar/39Ar and cosmogenic exposure dating of six nakhlites, meteorites that were ejected from Mars by a single impact event at 10.7 ± 0.8 Ma (2σ). We find that the nakhlites sample a layered volcanic sequence with at least four discrete eruptive events spanning 93 ± 12 Ma (1416 ± 7 Ma to 1322 ± 10 Ma (2σ)). A non-radiogenic trapped 40Ar/36Ar value of 1511 ± 74 (2σ) provides a precise and robust constraint for the mid-Amazonian Martian atmosphere. Our data show that the nakhlite-source volcano grew at a rate of ca. 0.4-0.7 m Ma-1-three orders of magnitude slower than comparable volcanoes on Earth, and necessitating that Mars was far more volcanically active earlier in its history.Mars hosts the solar system's largest volcanoes, but their formation rates remain poorly constrained. Here, the authors have measured the crystallization and ejection ages of meteorites from a Martian volcano and find that its growth rate was much slower than analogous volcanoes on Earth.

7.
Carbonates Evaporites ; 30(4): 477-481, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-32355407

RESUMO

Owing to its diagenetic instability, aragonite is rare in the geological record and almost entirely absent from pre-carboniferous sedimentary rocks. The former presence of this mineral in older deposits has to be inferred from petrographic, chemical or isotopic proxies. Crystals of aragonite that formed around 4563 million years ago occur in carbonaceous chondrite meteorites, showing that under certain conditions, the orthorhombic polymorph of Ca-carbonate can survive essentially indefinitely. Together with other carbonate minerals, phyllosilicates and sulphides, this aragonite formed by low-temperature water-mediated alteration of anhydrous minerals and glass in the interior of the meteorite's parent asteroid(s). The survival of aragonite for such a long time can be attributed to the loss of free water by its incorporation into phyllosilicates, and to the very low permeability of the fine-grained and organic-rich rock matrix that prevented the ingress of fresh solutions via intergranular flow. By analogy with these meteorites, terrestrial aragonite is likely to survive where it has been similarly isolated from liquid water, particularly in organic-rich mudrocks, and such deposits may provide important new evidence for deducing the original mineralogy of skeletal and non-skeletal carbonates in deep-time.

8.
Nat Commun ; 4: 2662, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24149494

RESUMO

Carbonation is the water-mediated replacement of silicate minerals, such as olivine, by carbonate, and is commonplace in the Earth's crust. This reaction can remove significant quantities of CO2 from the atmosphere and store it over geological timescales. Here we present the first direct evidence for CO2 sequestration and storage on Mars by mineral carbonation. Electron beam imaging and analysis show that olivine and a plagioclase feldspar-rich mesostasis in the Lafayette meteorite have been replaced by carbonate. The susceptibility of olivine to replacement was enhanced by the presence of smectite veins along which CO2-rich fluids gained access to grain interiors. Lafayette was partially carbonated during the Amazonian, when liquid water was available intermittently and atmospheric CO2 concentrations were close to their present-day values. Earlier in Mars' history, when the planet had a much thicker atmosphere and an active hydrosphere, carbonation is likely to have been an effective mechanism for sequestration of CO2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...