Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Cancer ; 131(1): 90-100, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38806726

RESUMO

BACKGROUND: Intrinsic and extrinsic factors in the tumour microenvironment (TME) contribute to therapeutic resistance. Here we demonstrate that transforming growth factor (TGF)-ß1 produced in the TME increased drug resistance of neuroblastoma (NB) cells. METHODS: Human NB cell lines were tested in vitro for their sensitivity to Doxorubicin (DOX) and Etoposide (ETOP) in the presence of tumour-associated macrophages (TAM) and mesenchymal stromal cells/cancer-associated fibroblasts (MSC/CAF). These experiments were validated in xenotransplanted and primary tumour samples. RESULTS: Drug resistance was associated with an increased expression of efflux transporter and anti-apoptotic proteins. Upregulation was dependent on activation of nuclear factor (NF)-κB by TGF-ß-activated kinase (TAK1) and SMAD2. Resistance was reversed upon pharmacologic and genetic inhibitions of NF-κB, and TAK1/SMAD2. Interleukin-6, leukaemia inhibitory factor and oncostatin M were upregulated by this TGF-ß/TAK1/NF-κB/SMAD2 signalling pathway contributing to drug resistance via an autocrine loop activating STAT3. An analysis of xenotransplanted NB tumours revealed an increased presence of phospho (p)-NF-κB in tumours co-injected with MSC/CAF and TAM, and these tumours failed to respond to Etoposide but responded if treated with a TGF-ßR1/ALK5 inhibitor. Nuclear p-NF-κB was increased in patient-derived tumours rich in TME cells. CONCLUSIONS: The data provides a novel insight into a targetable mechanism of environment-mediated drug resistance.


Assuntos
Doxorrubicina , Resistencia a Medicamentos Antineoplásicos , NF-kappa B , Neuroblastoma , Fator de Crescimento Transformador beta1 , Microambiente Tumoral , Humanos , Microambiente Tumoral/efeitos dos fármacos , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , NF-kappa B/metabolismo , Animais , Fator de Crescimento Transformador beta1/metabolismo , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Camundongos , Etoposídeo/farmacologia , Transdução de Sinais/efeitos dos fármacos , MAP Quinase Quinase Quinases/metabolismo , Proteína Smad2/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/efeitos dos fármacos , Fibroblastos Associados a Câncer/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...