Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int Immunol ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642134

RESUMO

Chronic bone loss is an under-recognized complication of malaria, the underlying mechanism of which remains incompletely understood. We have previously shown that persistent accumulation of Plasmodium products in the bone marrow leads to chronic inflammation in osteoblast (OB) and osteoclast (OC) precursors causing bone loss through MyD88, an adaptor molecule for diverse inflammatory signals. However, the specific contribution of MyD88 signaling in OB or OC precursors in malaria-induced bone loss remains elusive. To assess the direct cell-intrinsic role of MyD88 signaling in adult bone metabolism under physiological and infection conditions, we used the Lox-Cre system to specifically deplete MyD88 in the OB or OC lineages. Mice lacking MyD88 primarily in the maturing OBs showed a comparable decrease in trabecular bone density by microcomputed tomography (µCT) to that of controls after PyNL infection. In contrast, mice lacking MyD88 in OC precursors showed significantly less trabecular bone loss than controls, suggesting that malaria-mediated inflammatory mediators are primarily controlled by MyD88 in the OC lineage. Surprisingly, however, depletion of MyD88 in OB, but not in OC precursors, resulted in reduced bone mass with decreased bone formation rates in the trabecular areas of femurs under physiological conditions. Notably, IGF-1, a key molecule for OB differentiation, was significantly lower locally and systemically when MyD88 was depleted in OBs. Thus, our data demonstrate an indispensable intrinsic role for MyD88 signaling in OB differentiation and bone formation, while MyD88 signaling in OC lineages plays a partial role in controlling malaria-induced inflammatory mediators and following bone pathology. These findings may lead to the identification of novel targets for specific intervention of bone pathologies, particularly in malaria-endemic regions.

2.
Int Immunol ; 34(7): 353-364, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35419609

RESUMO

Agonists for TLR9 and stimulator of IFN genes (STING) offer therapeutic applications as both anti-tumor agents and vaccine adjuvants, though their clinical applications are limited; the clinically available TLR9 agonist is a weak IFN inducer and STING agonists induce undesired type 2 immunity. Yet, combining TLR9 and STING agonists overcame these limitations by synergistically inducing innate and adaptive IFNγ to become an advantageous type 1 adjuvant, suppressing type 2 immunity, in addition to exerting robust anti-tumor activities when used as a monotherapeutic agent for cancer immunotherapy. Here, we sought to decipher the immunological mechanisms behind the synergism mediated by TLR9 and STING agonists and found that their potent anti-tumor immunity in a Pan02 peritoneal dissemination model of pancreatic cancer was achieved only when agonists for TLR9 and STING were administered locally, and was via mechanisms involving CD4 and CD8 T cells as well as the co-operative action of IL-12 and type I IFNs. Rechallenge studies of long-term cancer survivors suggested that the elicitation of Pan02-specific memory responses provides protection against the secondary tumor challenge. Mechanistically, we found that TLR9 and STING agonists synergistically induce IL-12 and type I IFN production in murine APCs. The synergistic effect of the TLR9 and STING agonists on IL-12p40 was at protein, mRNA and promoter activation levels, and transcriptional regulation was mediated by a 200 bp region situated 983 bp upstream of the IL-12p40 transcription initiation site. Such intracellular transcriptional synergy may hold a key in successful cancer immunotherapy and provide further insights into dual agonism of innate immune sensors during host homeostasis and diseases.


Assuntos
Proteínas de Membrana , Neoplasias , Receptor Toll-Like 9 , Adjuvantes Imunológicos/farmacologia , Animais , Imunoterapia , Interleucina-12 , Subunidade p40 da Interleucina-12 , Proteínas de Membrana/metabolismo , Camundongos , Receptor Toll-Like 9/metabolismo
3.
J Exp Med ; 219(2)2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34910106

RESUMO

The germinal center (GC) is a site where somatic hypermutation and clonal selection are coupled for antibody affinity maturation against infections. However, how GCs are formed and regulated is incompletely understood. Here, we identified an unexpected role of Tank-binding kinase-1 (TBK1) as a crucial B cell-intrinsic factor for GC formation. Using immunization and malaria infection models, we show that TBK1-deficient B cells failed to form GC despite normal Tfh cell differentiation, although some malaria-infected B cell-specific TBK1-deficient mice could survive by GC-independent mechanisms. Mechanistically, TBK1 phosphorylation elevates in B cells during GC differentiation and regulates the balance of IRF4/BCL6 expression by limiting CD40 and BCR activation through noncanonical NF-κB and AKTT308 signaling. In the absence of TBK1, CD40 and BCR signaling synergistically enhanced IRF4 expression in Pre-GC, leading to BCL6 suppression, and therefore failed to form GCs. As a result, memory B cells generated from TBK1-deficient B cells fail to confer sterile immunity upon reinfection, suggesting that TBK1 determines B cell fate to promote long-lasting humoral immunity.


Assuntos
Linfócitos B/imunologia , Linfócitos B/metabolismo , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Interações Hospedeiro-Patógeno , Infecções/etiologia , Proteínas Serina-Treonina Quinases/genética , Animais , Biomarcadores , Antígenos CD40/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Imunidade Humoral , Imunização , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo
4.
Int Immunol ; 32(5): 359-368, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-31879779

RESUMO

Heparin is used extensively as an anticoagulant in a broad range of diseases and procedures; however, its biological effects are not limited to coagulation and remain incompletely understood. Heparin usage can lead to the life-threatening complication known as heparin-induced thrombocytopenia (HIT), caused by the development of antibodies against heparin/PF4 complexes. Here, we demonstrate the ability of heparin to induce neutrophil extracellular traps (NETs). NETs occurred with cell lysis and death, but live neutrophils releasing extracellular DNA strands, known as vital NETs, also occurred abundantly. Formation of NETs was time and dose dependent, and required reactive oxygen species and neutrophil elastase. Other compounds related to heparin such as low molecular weight heparin, fondaparinux and heparan sulfate either failed to induce NETs, or did so to a much lesser extent. Our findings suggest the ability of heparin to directly induce NET formation should be considered in the context of heparin treatment and HIT pathogenesis.


Assuntos
Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Heparina/metabolismo , Elastase de Leucócito/metabolismo , Trombocitopenia/imunologia , Humanos
5.
Cytometry A ; 95(5): 565-578, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30985081

RESUMO

Neutrophil extracellular trap (NET) formation involves the release of DNA outside the cell to neutralize pathogens. Techniques such as live microscopy, flow cytometry, and intravital imaging allow the characterization of NETs, but these either cannot be applied in vivo, lack specificity or require invasive procedures. We developed an automated analysis method to rapidly acquire and characterize cells as NETs or NET precursors, as opposed to cells undergoing other forms of cell death, using imaging flow cytometry. NETs were maintained in solution using a novel three-dimensional cell culture system in which cells are suspended at the interface of two liquids of different density. Critically, we identify NETs using an image analysis algorithm based on morphological data showing the extrusion of DNA beyond the cell boundaries. In vitro, we used this technique to demonstrate different requirements for NET formation in human and mouse neutrophils. We also measured NETs in whole blood during infection of mice with the malaria parasite Plasmodium yoelii. We expect this technique will provide a valuable approach to better understand the process of NET formation and its importance in disease. © 2019 International Society for Advancement of Cytometry.


Assuntos
Armadilhas Extracelulares/metabolismo , Citometria por Imagem/métodos , Algoritmos , Animais , Apoptose/efeitos dos fármacos , Automação , Armadilhas Extracelulares/efeitos dos fármacos , Processamento de Imagem Assistida por Computador , Cinética , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidases/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Desiminases de Arginina em Proteínas/metabolismo , Acetato de Tetradecanoilforbol/farmacologia , Fatores de Tempo
6.
Front Immunol ; 9: 2619, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30515151

RESUMO

Recently, it was reported that 2-hydroxypropyl-ß-cyclodextrin (HP-ß-CyD), a common pharmaceutical additive, can act as a vaccine adjuvant to enhance protective type-2 immunogenicity to co-administered seasonal influenza split vaccine by inducing host-derived damage-associated molecular patterns (DAMPs). However, like most other DAMP-inducing adjuvants such as aluminum hydroxide (Alum), HP-ß-CyD may not be sufficient for the induction of protective type-1 (cellular) immune responses, thereby leaving room for improvement. Here, we demonstrate that a combination of HP-ß-CyD with a humanized TLR9 agonist, K3 CpG-ODN, a potent pathogen-associated molecular pattern (PAMP), enhanced the protective efficacy of the co-administered influenza split vaccine by inducing antigen-specific type-2 and type-1 immune responses, respectively. Moreover, substantial antigen-specific IgE induction by HP-ß-CyD, which can cause an allergic response to immunized antigen was completely suppressed by the addition of K3 CpG-ODN. Furthermore, HP-ß-CyD- and K3 CpG-ODN-adjuvanted influenza split vaccination protected the mice against lethal challenge with high doses of heterologous influenza virus, which could not be protected against by single adjuvant vaccines. Further experiments using gene deficient mice revealed the unique immunological mechanism of action in vivo, where type-2 and type-1 immune responses enhanced by the combined adjuvants were dependent on TBK1 and TLR9, respectively, indicating their parallel signaling pathways. Finally, the analysis of immune responses in the draining lymph node suggested that HP-ß-CyD promotes the uptake of K3 CpG-ODN by plasmacytoid dendritic cells and B cells, which may contributes to the activation of these cells and enhanced production of IgG2c. Taken together, the results above may offer potential clinical applications for the combination of DAMP-inducing adjuvant and PAMP adjuvant to improve vaccine immunogenicity and efficacy by enhancing both type-2 and type-1 immune responses in a parallel manner.


Assuntos
Linfócitos B/imunologia , Células Dendríticas/imunologia , Vírus da Influenza A Subtipo H1N1/fisiologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Infecções por Orthomyxoviridae/imunologia , Células Th1/imunologia , Células Th2/imunologia , 2-Hidroxipropil-beta-Ciclodextrina/imunologia , Adjuvantes Imunológicos , Alarminas/metabolismo , Animais , Anticorpos Antivirais/sangue , Células Cultivadas , Feminino , Humanos , Imunogenicidade da Vacina , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oligodesoxirribonucleotídeos/imunologia , Moléculas com Motivos Associados a Patógenos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptor Toll-Like 9/agonistas , Receptor Toll-Like 9/genética , Vacinação
7.
Sci Immunol ; 2(12)2017 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-28783657

RESUMO

Although malaria is a life-threatening disease with severe complications, most people develop partial immunity and suffer from mild symptoms. However, incomplete recovery from infection causes chronic illness, and little is known of the potential outcomes of this chronicity. We found that malaria causes bone loss and growth retardation as a result of chronic bone inflammation induced by Plasmodium products. Acute malaria infection severely suppresses bone homeostasis, but sustained accumulation of Plasmodium products in the bone marrow niche induces MyD88-dependent inflammatory responses in osteoclast and osteoblast precursors, leading to increased RANKL expression and overstimulation of osteoclastogenesis, favoring bone resorption. Infection with a mutant parasite with impaired hemoglobin digestion that produces little hemozoin, a major Plasmodium by-product, did not cause bone loss. Supplementation of alfacalcidol, a vitamin D3 analog, could prevent the bone loss. These results highlight the risk of bone loss in malaria-infected patients and the potential benefits of coupling bone therapy with antimalarial treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...