Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Adv Sci (Weinh) ; : e2403071, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38868947

RESUMO

To recharge lithium-ion batteries quickly and safely while avoiding capacity loss and safety risks, a novel electrode design that minimizes cell polarization at a higher current is highly desired. This work presents a dual-layer electrode (DLE) technology via sequential coating of two different anode materials to minimize the overall electrode resistance upon fast charging. Electrochemical impedance spectroscopy and distribution of relaxation times analysis revealed the dynamic evolution of electrode impedances in synthetic graphite (SG) upon a change in the state of charge (SOC), whereas the natural graphite (NG) maintains its original impedance regardless of SOC variation. This disparity dictates the sequence of the NG and SG coating layers within the DLE, considering the temporal SOC gradient developed upon fast charging. Simulation and experimental results suggest that DLE positioning NG and SG on the top (second-layer) and bottom (first-layer), respectively, can effectively reduce the overall resistance at a 4 C-rate (15-min charging), demonstrating two times higher capacity retention (61.0%) over 200 cycles than its counterpart with reversal sequential coating, and is higher than single-layer electrodes using NG or NG/SG binary mixtures. Hence, this study can guide the combinatorial sequence for multi-layer coating of various active materials for a lower-resistivity, thick-electrode design.

2.
Cancers (Basel) ; 16(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38730618

RESUMO

Dysregulated DNA methylation in cancer is critical in the transcription machinery associated with cancer progression. Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype, but no treatment targeting TNBC biomarkers has yet been developed. To identify specific DNA methylation patterns in TNBC, methyl-binding domain protein 2 (MBD) sequencing data were compared in TNBC and the three other major breast cancer subtypes. Integrated analysis of DNA methylation and gene expression identified a gene set showing a correlation between DNA methylation and gene expression. ATPase Na+/K+-transporting subunit alpha 1 (ATP1A1) was found to be specifically hypomethylated in the coding sequence (CDS) region and to show increased expression in TNBC. The Cancer Genome Atlas (TCGA) database also showed that hypomethylation and high expression of ATP1A1 were strongly associated with poor survival in patients with TNBC. Furthermore, ATP1A1 knockdown significantly reduced the viability and tumor-sphere formation of TNBC cells. These results suggest that the hypomethylation and overexpression of ATP1A1 could be a prognostic marker in TNBC and that the manipulation of ATP1A1 expression could be a therapeutic target in this disease.

3.
Anal Chim Acta ; 1306: 342623, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692796

RESUMO

BACKGROUND: Brain-derived exosomes circulate in the bloodstream and other bodily fluids, serving as potential indicators of neurological disease progression. These exosomes present a promising avenue for the early and precise diagnosis of neurodegenerative conditions. Notably, miRNAs found in plasma extracellular vesicles (EVs) offer distinct diagnostic benefits due to their stability, abundance, and resistance to breakdown. RESULTS: In this study, we introduce a method using transferrin conjugated magnetic nanoparticles (TMNs) to isolate these exosomes from the plasma of patients with neurological disorders. This TMNs technique is both quick (<35 min) and cost-effective, requiring no high-priced ingredients or elaborate equipment for EV extraction. Our method successfully isolated EVs from 33 human plasma samples, including those from patients with Parkinson's disease (PD), Multiple Sclerosis (MS), and Dementia. Using quantitative polymerase chain reaction (PCR) analysis, we evaluated the potential of 8 exosomal miRNA profiles as biomarker candidates. Six exosomal miRNA biomarkers (miR-195-5p, miR-495-3p, miR-23b-3P, miR-30c-2-3p, miR-323a-3p, and miR-27a-3p) were consistently linked with all stages of PD. SIGNIFICANCE: The TMNs method provides a practical, cost-efficient way to isolate EVs from biological samples, paving the way for non-invasive neurological diagnoses. Furthermore, the identified miRNA biomarkers in these exosomes may emerge as innovative tools for precise diagnosis in neurological disorders including PD.


Assuntos
Exossomos , Nanopartículas de Magnetita , MicroRNAs , Doença de Parkinson , Transferrina , Humanos , Doença de Parkinson/diagnóstico , Doença de Parkinson/sangue , Exossomos/química , MicroRNAs/sangue , Nanopartículas de Magnetita/química , Transferrina/química , Encéfalo/metabolismo , Biomarcadores/sangue , Masculino , Feminino
4.
Bioact Mater ; 38: 331-345, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38764447

RESUMO

Cellular reprogramming technologies have been developed with different physicochemical factors to improve the reprogramming efficiencies of induced pluripotent stem cells (iPSCs). Ultrasound is a clinically applied noncontact biophysical factor known for regulating various cellular behaviors but remains uninvestigated for cellular reprogramming. Here, we present a new reprogramming strategy using low-intensity ultrasound (LIUS) to improve cellular reprogramming of iPSCs in vitro and in vivo. Under 3D microenvironment conditions, increased LIUS stimulation shows enhanced cellular reprogramming of the iPSCs. The cellular reprogramming process facilitated by LIUS is accompanied by increased mesenchymal to epithelial transition and histone modification. LIUS stimulation transiently modulates the cytoskeletal rearrangement, along with increased membrane fluidity and mobility to increase HA/CD44 interactions. Furthermore, LIUS stimulation with HA hydrogel can be utilized in application of both human cells and in vivo environment, for enhanced reprogrammed cells into iPSCs. Thus, LIUS stimulation with a combinatorial 3D microenvironment system can improve cellular reprogramming in vitro and in vivo environments, which can be applied in various biomedical fields.

5.
Front Vet Sci ; 11: 1276984, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38812561

RESUMO

Introduction: Contrast-enhanced computed tomography (CT) of the spleen in dogs and cats often displays a heterogeneous enhancement pattern. This study aimed to describe the CT appearances and duration of heterogeneous splenic enhancement in clinically healthy cats and to compare those enhancements with diffuse infiltrative splenic lesions (DISL). Methods: Spleens of 14 healthy cats were imaged using contrast-enhanced CT protocols which were obtained at 10, 25, and 45 s, and then every 40 s thereafter until 245 s had past from the initiation of contrast medium injection. The presence of transient splenic heterogeneity was evaluated. In addition, the relationships of certain variables including age, weight, systolic blood pressure, and splenic volume to the duration and the degree of splenic enhancement were determined. Also, medical records and CT images of five cats with DISL were retrospectively evaluated. Result: Transient heterogeneous enhancement of the spleen was observed in all 14 healthy cats, and the maximum heterogeneity was observed 25 s after the injection. Splenic heterogeneity lasted more than 5 min in nine of 14 cats (64.3%). No statistically significant relationships were seen between the duration and degree of splenic heterogeneity in the images taken 25 s after the injection and variables including weight, age, systolic blood pressure, and splenic volume. Discussion: Compared to the healthy group, early homogeneous splenic enhancement along with generalized splenomegaly was observed in all cats with DISL. Transient splenic heterogeneity is highly common in cats undergoing contrast-enhanced CT even in the generally scanned delayed phases, which can help with the interpretation of CT images of feline spleens. In addition, our results suggest that homogeneous splenic enhancement in post-contrast CT scans along with splenomegaly on CT images could be useful as a diagnostic indicator of DISL in cats.

8.
Nat Commun ; 15(1): 1366, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355558

RESUMO

Efficient pathogen enrichment and nucleic acid isolation are critical for accurate and sensitive diagnosis of infectious diseases, especially those with low pathogen levels. Our study introduces a biporous silica nanofilms-embedded sample preparation chip for pathogen and nucleic acid enrichment/isolation. This chip features unique biporous nanostructures comprising large and small pore layers. Computational simulations confirm that these nanostructures enhance the surface area and promote the formation of nanovortex, resulting in improved capture efficiency. Notably, the chip demonstrates a 100-fold lower limit of detection compared to conventional methods used for nucleic acid detection. Clinical validations using patient samples corroborate the superior sensitivity of the chip when combined with the luminescence resonance energy transfer assay. The enhanced sample preparation efficiency of the chip, along with the facile and straightforward synthesis of the biporous nanostructures, offers a promising solution for polymer chain reaction-free detection of nucleic acids.


Assuntos
Nanoestruturas , Ácidos Nucleicos , Humanos , Microfluídica , Dióxido de Silício , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Técnicas de Amplificação de Ácido Nucleico
9.
Adv Healthc Mater ; 13(6): e2303244, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37934913

RESUMO

Wound management remains a critical healthcare issue due to the rising incidence of chronic diseases leading to persistent wounds. Traditional dressings have their limitations, such as potential for further damage during changing and suboptimal healing conditions. Recently, hydrogel-based dressings have gained attention due to their biocompatibility, biodegradability, and ability to fill wounds. Particularly, polysaccharide-based hydrogels have shown potential in various medical applications. This study focuses on the development of a novel hydrofilm wound dressing produced from a blend of chia seed mucilage (CSM) and polyvinyl alcohol (PVA), termed CSMP. While the individual properties of CSM and PVA are well-documented, their combined potential in wound management is largely unexplored. CSMP, coupled with sorbitol and glycerin, and cross-linked using ultraviolet light, results in a flexible, adhesive, and biocompatible hydrofilm demonstrating superior water absorption, moisturizing, and antibacterial properties. This hydrofilm promotes epithelial cell migration, enhanced collagen production, and outperforms existing commercial dressings in animal tests. The innovative CSMP hydrofilm offers a promising, cost-effective approach for improved wound care, bridging existing gaps in dressing performance and preparation simplicity. Future research can unlock further applications of such polysaccharide-based hydrofilm dressings.


Assuntos
Antibacterianos , Cicatrização , Animais , Bandagens , Movimento Celular , Glicerol/farmacologia , Hidrogéis/farmacologia
10.
Ultrason Sonochem ; 99: 106579, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37683416

RESUMO

This study analyzed the effect of ultrasound treatment (up to 9 min, 20 kHz, 130 W) on the volatile compounds, total polyphenols, total flavonoids, and isoflavones (daidzein, genistein, daidzin, genistin, and glycitin) in soymilk processed with microwave-roasted (700 W for 270 s) black soybean (Glycine max (L.) Merr.). 1-Hexanol and 1-octen-3-ol, unpleasant soybean flavors, were found to decrease by up to 96.13% and 93.04%, respectively, in ultrasound-treated soymilk compared to the control. 2,3-Diethyl-5-methylpyrazine, a baked flavor, which exhibited the highest odor impact ratio in soymilk processed with microwave-roasted soybean, increased significantly during ultrasound treatment (p < 0.05). The content of total isoflavones, polyphenols, and flavonoids increased (p < 0.05) with the increase in ultrasound treatment time. Spearman's correlation analysis showed that browning was positively correlated (p < 0.01) with total phenols, total furans, total pyrazines, total polyphenols, and total isoflavones. This study discusses the applicability of microwave-roasted soybeans for improving the volatile profile and bioactive compounds in soymilk and provides information on the effects of ultrasound treatment on the volatile compounds, total polyphenols, flavonoids, and isoflavones in soymilk.


Assuntos
Glycine max , Isoflavonas , Flavonoides , Polifenóis , Micro-Ondas
11.
ACS Nano ; 17(18): 18332-18345, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37703463

RESUMO

Surface-enhanced Raman scattering (SERS) has evolved into a robust analytical technique capable of detecting a variety of biomolecules despite challenges in securing a reliable Raman signal. Conventional SERS-based nucleic acid detection relies on hybridization assays, but reproducibility and signal strength issues have hindered research on directly amplifying nucleic acids on SERS surfaces. This study introduces a deep learning assisted ZnO-Au-SERS-based direct amplification (ZADA) system for rapid, sensitive molecular diagnostics. The system employs a SERS substrate fabricated by depositing gold on uniformly grown ZnO nanorods. These nanorods create hot spots for the amplification of the target nucleic acids directly on the SERS surface, eliminating the need for postamplification hybridization and Raman reporters. The limit of detection of the ZADA system was superior to those of the conventional amplification methods. Clinical validation of the ZADA system with coronavirus disease 2019 (COVID-19) samples from human patients yielded a sensitivity and specificity of 92.31% and 81.25%, respectively. The integration of a deep learning program further enhanced sensitivity and specificity to 100% and reduced SERS analysis time, showcasing the potential of the ZADA system for rapid, label-free disease diagnosis via direct nucleic acid amplification and detection within 20 min.


Assuntos
COVID-19 , Aprendizado Profundo , Ácidos Nucleicos , Óxido de Zinco , Humanos , Análise Espectral Raman , Patologia Molecular , Reprodutibilidade dos Testes , Teste para COVID-19
12.
Front Psychiatry ; 14: 1200230, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37533885

RESUMO

Background and aims: Considering the growing number of gamers worldwide and increasing public concerns regarding the negative consequences of problematic gaming, the aim of the present systematic review was to provide a comprehensive overview of gaming disorder (GD) by identifying empirical studies that investigate biological, psychological, and social factors of GD using screening tools with well-defined psychometric properties. Materials and methods: A systematic literature search was conducted through PsycINFO, PubMed, RISS, and KISS, and papers published up to January 2022 were included. Studies were screened based on the GD diagnostic tool usage, and only five scales with well-established psychometric properties were included. A total of 93 studies were included in the synthesis, and the results were classified into three groups based on biological, psychological, and social factors. Results: Biological factors (n = 8) included reward, self-concept, brain structure, and functional connectivity. Psychological factors (n = 67) included psychiatric symptoms, psychological health, emotion regulation, personality traits, and other dimensions. Social factors (n = 29) included family, social interaction, culture, school, and social support. Discussion: When the excess amount of assessment tools with varying psychometric properties were controlled for, mixed results were observed with regards to impulsivity, social relations, and family-related factors, and some domains suffered from a lack of study results to confirm any relevant patterns. Conclusion: More longitudinal and neurobiological studies, consensus on a diagnostic tool with well-defined psychometric properties, and an in-depth understanding of gaming-related factors should be established to settle the debate regarding psychometric weaknesses of the current diagnostic system and for GD to gain greater legitimacy in the field of behavioral addiction.

13.
J Hazard Mater ; 454: 131436, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37146328

RESUMO

Ozonation, a viable option for improving wastewater effluent quality, requires process optimization to ensure the organic micropollutants (OMPs) elimination and disinfection under minimized byproduct formation. This study assessed and compared the efficiencies of ozonation (O3) and ozone with hydrogen peroxide (O3/H2O2) for 70 OMPs elimination, inactivation of three bacteria and three viruses, and formation of bromate and biodegradable organics during the bench-scale O3 and O3/H2O2 treatment of municipal wastewater effluent. 39 OMPs were fully eliminated, and 22 OMPs were considerably eliminated (54 ± 14%) at an ozone dosage of 0.5 gO3/gDOC for their high reactivity to ozone or •OH. The chemical kinetics approach accurately predicted the OMP elimination levels based on the rate constants and exposures of ozone and •OH, where the quantum chemical calculation and group contribution method successfully predicted the ozone and •OH rate constants, respectively. Microbial inactivation levels increased with increasing ozone dosage up to ∼3.1 (bacteria) and ∼2.6 (virus) log10 reductions at 0.7 gO3/gDOC. O3/H2O2 minimized bromate formation but significantly decreased bacteria/virus inactivation, whereas its impact on OMP elimination was insignificant. Ozonation produced biodegradable organics that were removed by a post-biodegradation treatment, achieving up to 24% DOM mineralization. These results can be useful for optimizing O3 and O3/H2O2 processes for enhanced wastewater treatment.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Peróxido de Hidrogênio , Bromatos , Desinfecção , Poluentes Químicos da Água/análise , Oxirredução , Purificação da Água/métodos , Bactérias
14.
Front Vet Sci ; 10: 1066420, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36876007

RESUMO

Caudal articular process (CAP) dysplasia is a congenital vertebral malformation that results from the failure of ossification center of articular process located in vertebrae, which includes aplasia or hypoplasia. In previous studies, it was reported to be common in small and chondrodystrophic dogs however, investigated in limited breeds. So we aimed to confirm the prevalence and the characteristics of CAP dysplasia in various breeds, and also to investigate the association of CAP dysplasia and spinal cord myelopathy in neurologically abnormal dogs. In this multicenter, retrospective study, the clinical records and thoracic vertebral column computed tomographic (CT) images of 717 dogs between February 2016 and August 2021 were included and 119 dogs which also underwent magnetic resonance imaging (MRI) examination were evaluated. Overall, 337 of 717 dogs (47.0%) had at least one thoracic CAP dysplasia and the prevalence of CAP dysplasia was significantly higher in dogs with a lower body weight (P < 0.0001). A total of 66.4% of toy breeds, 39.0% of small breeds, 20.2% of medium breeds, and 6.0% of large breeds were affected by at least one CAP dysplasia. The most affected vertebra was T4 in toy (48.1%) and small breeds (20.8%), and T5 in medium (20.8%) and large breeds (5.0%). In all groups, prevalence of CAP dysplasia between T1 and T9 was higher than post-diaphragmatic vertebrae (T10-T13). Fifty nine of 119 dogs which underwent both CT and MRI examination had symptoms of spinal cord myelopathy of T3-L3 and twenty-five of 59 dogs (42.3%) had at least one thoracic CAP dysplasia. In that 25 neurologically abnormal dogs, 41 sites of intervertebral disc disease (IVDD) were detected. However, only one dog had both CAP dysplasia and herniated disc at the same level. Also, CAP dysplasia associated non-compressive spinal myelopathy at the same level was found in the other dog. Association CAP dysplasia with spinal myelopathy is speculated but is not confirmed by this study.

15.
Aust Crit Care ; 36(4): 640-649, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35718628

RESUMO

OBJECTIVE: Sleep disturbance and delirium are common problems experienced by critically ill patients in the intensive care unit (ICU). These interrelated issues increase the length of stay in the ICU but might also negatively affect long-term health outcomes. The objective of this study was to identify the nonpharmacological interventions provided to improve sleep or prevent delirium in ICU patients or both and integrate their effect sizes. REVIEW METHODS: This study was a registered systematic review and meta-analysis. We searched MEDLINE, CINAHL, EMBASE, Web of Science, and Cochrane Library from their inception until December 2021. We included randomised controlled trials and nonrandomised controlled trials-(RCT) that provided nonpharmacological interventions and reported sleep or delirium as outcome variables. Studies not published in English or whose full text was not available were excluded. The quality of the evidence was assessed with version 2 of the Cochrane risk-of-bias tool for RCTs and the Risk Of Bias In Non-randomised Studies of Interventions (ROBINS-I). RESULTS: The systematic review included 118 studies, and the meta-analysis included 100 studies. Overall nonpharmacological interventions had significant effects on subjective sleep quality (standardised mean difference = 0.30, 95% confidence interval [CI] = 0.05 to 0.56), delirium incidence (odds ratio = 0.62, 95% CI = 0.53 to 0.73), and delirium duration (standardised mean difference = -0.68, 95% CI = -0.93 to -0.43). In individual interventions, aromatherapy, music, and massage effectively improved sleep. Exercise, family participation, information giving, cognitive stimulation, bright light therapy, architectural intervention, and bundles/protocols effectively reduced delirium. Light/noise blocking was the only intervention that ensured both sleep improvement and delirium prevention. CONCLUSIONS: Our results suggest nonpharmacological interventions improve sleep and prevent delirium in ICU patients. We recommend that ICU nurses use nonpharmacological interventions that promote person-environment compatibility in their clinical practice. The results of our review can guide nurses in adopting interventions related to sleep and delirium. PROSPERO REFERENCE NUMBER: CRD42021230815.


Assuntos
Estado Terminal , Delírio , Humanos , Estado Terminal/psicologia , Delírio/prevenção & controle , Sono , Unidades de Terapia Intensiva , Cuidados Críticos
16.
J Control Release ; 354: 45-56, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36586671

RESUMO

Extracellular vesicles (EVs) are nano-sized carriers that reflect the parent cell's information and are known to mediate cell-cell communication. In order to overcome the disadvantages of mesenchymal stem cells (MSCs) in cell therapy, such as unexpected differentiation leading to tumorization, immune rejection, and other side effects, EVs derived from MSCs (MSC-EVs) with the tissue regenerative function have been studied as new cell-free therapeutics. However, therapeutic applications of EVs require overcoming several challenges. First, the production efficiency of MSC-EVs should be increased at least as much as the quantity of them are required to their clinical application; second, MSC-EVs needs to show various functionality further, thereby increasing tissue regeneration efficiency. In this study, we treated tauroursodeoxycholic acid (TUDCA), a biological derivative known to regulate cholesterol, to MSCs and investigated whether TUDCA treatment would be able to increase EV production efficiency and tissue regenerative capacity of EVs. Indeed, it appears that TUDCA priming to MSC increases the yield of MSC-EVs >2 times by reducing the cellular cholesterol level in MSCs and increasing the exocytosis-related CAV1 expression. Interestingly, it was found that the EVs derived from TUDCA-primed MSCs (T-EV) contained higher amounts of anti-inflammatory cytokines (IL1RN, IL6, IL10, and IL11) and osteogenic proteins (ALP, RUNX2, BMP2, BMPR1, and BMPR2) than those in control MSC-EVs (C-EV). Besides, it was shown that T-EV not only regulated M1/M2 macrophages differentiation of monocytes, also effectively increased the osteogenic differentiation of MSCs as well as bone tissue regeneration in a bone defect rat model. Based on these results, it is concluded that TUDCA treatment to MSC as a new approach endows EV with high-yield production and functionality. Thus, we strongly believe T-EV would be a powerful therapeutic material for bone tissue regeneration and potentially could be expanded to other types of tissue regeneration for clinical applications.


Assuntos
Vesículas Extracelulares , Osteogênese , Ratos , Animais , Citocinas/metabolismo , Regeneração Óssea , Vesículas Extracelulares/metabolismo
17.
Tissue Eng Regen Med ; 20(1): 143-154, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36482140

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) are used for tissue regeneration due to their wide differentiation capacity and anti-inflammatory effects. Extracellular vesicles (EVs) derived from MSCs are also known for their regenerative effects as they contain nucleic acids, proteins, lipids, and cytokines similar to those of parental cells. There are several studies on the use of MSCs or EVs for tissue regeneration. However, the combinatorial effect of human MSCs (hMSCs) and EVs is not clear. In this study, we investigated the combinatorial effect of hMSCs and EVs on cartilage regeneration via co-encapsulation in a hyaluronic-acid (HA)-based hydrogel. METHODS: A methacrylic-acid-based HA hydrogel was prepared to encapsulate hMSCs and EVs in hydrogels. Through in vitro and in vivo analyses, we investigated the chondrogenic potential of the HA hydrogel-encapsulated with hMSCs and EVs. RESULTS: Co-encapsulation of hMSCs with EVs in the HA hydrogel increased the chondrogenic differentiation of hMSCs and regeneration of damaged cartilage tissue compared with that of the HA hydrogel loaded with hMSCs only. CONCLUSION: Co-encapsulation of hMSCs and EVs in the HA hydrogel effectively enhances cartilage tissue regeneration due to the combinatorial therapeutic effect of hMSCs and EVs. Thus, in addition to cartilage tissue regeneration for the treatment of osteoarthritis, this approach would be a useful strategy to improve other types of tissue regeneration.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Humanos , Hidrogéis/farmacologia , Cartilagem/metabolismo , Ácido Hialurônico/farmacologia , Células-Tronco Mesenquimais/metabolismo , Vesículas Extracelulares/metabolismo
18.
Front Vet Sci ; 10: 1280028, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38352169

RESUMO

Introduction: Transarterial embolization (TAE) is one of the treatment options for liver masses that are not suitable for surgery and they have been applied in veterinary medicine for about 20 years, but surgical resection is considered as the first treatment option, and only a few case reports and articles about TAE in dogs have been published. Although understanding of vascular anatomy for the procedure is important, previous studies lack of the information about hepatic artery anatomy in small and toy-breed dogs. Due to the introduction of 3D print in veterinary medicine, it is now possible to make 3D models for preoperative planning. The purpose of this study is to understand the hepatic arterial vascular structure of various sizes and breeds of dogs, and to develop 3D-printed canine artery models with and without hepatic tumors to simulate TAE procedure. Methods: CT images of a total of 84 dogs with normal hepatic arteries were analyzed, and the mean value and standard deviation of body weight, celiac artery size, and hepatic artery size were 6.47 ± 4.44 kg, 3.28 ± 0.77 mm, and 2.14 ± 0.43 mm, respectively. Results: It was established that type 2-2-1, which has two separate hepatic branches-the right medial and left branch and the right lateral branch that runs to the right lateral lobe and caudate process-is the most prevalent of the hepatic artery branch types, as it was in the previous study. The review of 65 CT images of dogs with hepatic tumors showed that 44.6% (29/65) had multifocal lesions in multiple lobes, for which TAE can be recommended. Discussion: Based on the result, a 3D model of the normal canine hepatic artery and the hepatic tumor was made using one representative case from each group, and despite the models having some limitations in reflecting the exact tactile and velocity of blood vessels, TAE procedure was successfully simulated using both models.

19.
Front Vet Sci ; 9: 819627, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35782562

RESUMO

Arterial thromboembolism is associated with high morbidity and mortality rates in cats. Definitive diagnosis requires advanced imaging modalities, such as computed tomography angiography (CTA) and contrast-enhanced (CE) magnetic resonance angiography (MRA). However, CTA involves exposure to a large amount of ionized radiation, and CE-MRA can cause systemic nephrogenic fibrosis. Non-contrast-enhanced (NE) MRA can help accurately diagnose vascular lesions without such limitations. In this study, we evaluated the ability of NE-MRA using three-dimensional electrocardiograph-gated fast spin-echo (3D ECG-FSE) and 3D time-of-flight (3D TOF) imaging to visualize the aorta and external iliac arteries in clinically healthy cats and compared the results with those obtained using CE-MRA. All 11 cats underwent 3D ECG-FSE, 3D TOF, and CE-MRA sequences. Relative signal intensity (rSI) for quantitative image analysis and image quality scores (IQS) for qualitative image analysis were assessed; the rSI values based on the 3D TOF evaluations were significantly lower than those obtained using 3D ECG-FSE (aorta 3D TOF: 0.57 ± 0.06, aorta 3D ECG-FSE: 0.83 ± 0.06, P < 0.001; external iliac arteries 3D TOF: 0.45 ± 0.06, external iliac arteries 3D ECG-FSE:0.80 ± 0.05, P < 0.001) and similar to those obtained using CE-MRA (aorta: 0.58 ± 0.05, external iliac arteries: 0.57 ± 0.03). Moreover, IQS obtained using 3D TOF were significantly higher than those obtained using 3D ECG-FSE (aorta 3D TOF: 3.95 ± 0.15, aorta 3D ECG-FSE: 2.32 ± 0.60, P < 0.001; external iliac arteries 3D ECG-FSE: 3.98 ± 0.08, external iliac arteries 3D ECG-FSE: 2.23 ± 0.56, P < 0.001) and similar to those obtained using CE-MRA (aorta: 3.61 ± 0.41, external iliac arteries: 3.57 ± 0.41). Thus, 3D TOF is more suitable and produces consistent image quality for visualizing the aorta and external iliac arteries in clinically healthy cats and this will be of great help in the diagnosis of FATE.

20.
Sci Total Environ ; 844: 156915, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-35772529

RESUMO

This study investigated the reaction kinetics and elimination efficiency of eleven synthetic musks during ozonation and UV254nm-based, advanced oxidation processes. The synthetic musks containing olefin moieties with electron-donating alkyl substituents such as octahydro tetramethyl naphthalenyl ethanone (OTNE) and ambrettolide (AMBT) showed high reactivity toward ozone (k ≥ 3.7 × 105 M-1 s-1) and free available chlorine (FAC) (k = 9.2 - 88 M-1 s-1), while all other synthetic musks were less ozone reactive (k = 0.3 - 560 M-1 s-1) and FAC-refractory. All synthetic musks showed high •OH reactivity (k > 5 × 109 M-1 s-1), except musk ketone (MK) (k = 2.3 × 109 M-1 s-1). In concordance with the kinetic information, OTNE and AMBT were efficiently eliminated (>97%) in simulated ozone treatments of drinking water at a specific ozone dose of 0.5 gO3/gDOC. The elimination levels of the other synthetic musks were below 50% at 0.5 gO3/gDOC. The fluence-based UV photolysis rate constant of the synthetic musks was determined to be (0.2 - 2.7) × 10-3 cm2/mJ. The elimination levels of synthetic musks during UV alone treatment ranged from 7 to 81% at a UV fluence of 500 mJ/cm2. The addition of 10 mg/L H2O2 (UV/H2O2) significantly enhanced the elimination of most synthetic musks (achieving >90% elimination at 500 mJ/cm2), indicating that the •OH reaction was mainly responsible for their elimination. The addition of 10 mg/L FAC (UV/FAC) also significantly enhanced the elimination of olefinic and aromatic synthetic musks (>90%), for which the reaction with ClO• was mainly responsible. For MK and two alkyl synthetic musks, their elimination during UV/FAC treatment was still limited (28 - 64%) and was mainly achieved by UV photolysis or reaction with •OH. In summary, this study substantiates the chemical kinetics approach as a helpful tool for predicting or interpreting the elimination of micropollutants during oxidative water treatment.


Assuntos
Água Potável , Ozônio , Poluentes Químicos da Água , Purificação da Água , Cloro , Peróxido de Hidrogênio , Cinética , Oxirredução , Raios Ultravioleta , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...