Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(17)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39273838

RESUMO

Climate change, a pressing global concern, poses significant challenges to agricultural systems worldwide. Among the myriad impacts of climate change, the cultivation of kiwifruit trees (Actinidia spp.) faces multifaceted challenges. In this review, we delve into the intricate effects of climate change on kiwifruit production, which span phenological shifts, distributional changes, physiological responses, and ecological interactions. Understanding these complexities is crucial for devising effective adaptation and mitigation strategies to safeguard kiwifruit production amidst climate variability. This review scrutinizes the influence of rising global temperatures, altered precipitation patterns, and a heightened frequency of extreme weather events on the regions where kiwifruits are cultivated. Additionally, it delves into the ramifications of changing climatic conditions on kiwifruit tree physiology, phenology, and susceptibility to pests and diseases. The economic and social repercussions of climate change on kiwifruit production, including yield losses, livelihood impacts, and market dynamics, are thoroughly examined. In response to these challenges, this review proposes tailored adaptation and mitigation strategies for kiwifruit cultivation. This includes breeding climate-resilient kiwifruit cultivars of the Actinidia species that could withstand drought and high temperatures. Additional measures would involve implementing sustainable farming practices like irrigation, mulching, rain shelters, and shade management, as well as conserving soil and water resources. Through an examination of the literature, this review showcases the existing innovative approaches for climate change adaptation in kiwifruit farming. It concludes with recommendations for future research directions aimed at promoting the sustainability and resilience of fruit production, particularly in the context of kiwifruit cultivation, amid a changing climate.

2.
Foods ; 10(2)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572175

RESUMO

The influence of the preharvest application of chitosan on physicochemical properties and changes in gene expression of 'Garmrok' kiwifruit during postharvest cold storage (0 °C; RH 90-95%; 90 days) was investigated. Preharvest treatment of chitosan increased the fruit weight but had no significant effect on fruit size. The chitosan treatment suppressed the ethylene production and respiration rate of kiwifruit during the cold storage. The reduction of ethylene production of chitosan-treated kiwifruit was accompanied with the suppressed expression of ethylene biosynthesis genes. Moreover, preharvest application of chitosan diminished weight loss and delayed the changes in physicochemical properties that include firmness, soluble solids content, titratable acidity, total sugars, total acids, total phenols, and total lignin. As a result, the preharvest application of chitosan delayed the maturation and ripening of fruit. Expression of genes related to cell wall modification was down-regulated during the early maturation (ripening) period, while those related to gene expression for lignin metabolism were up-regulated at the later stages of ripening. These results demonstrate that the preharvest application of chitosan maintained the fruit quality and extends the postharvest life of 'Garmrok' kiwifruit, possibly through the modulation of genes related to ethylene biosynthesis, cell wall modification, and lignin metabolism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA