Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroimage ; 109: 341-56, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25555998

RESUMO

Advances in diffusion-weighted magnetic resonance imaging (DW-MRI) have led to many alternative diffusion sampling strategies and analysis methodologies. A common objective among methods is estimation of white matter fiber orientations within each voxel, as doing so permits in-vivo fiber-tracking and the ability to study brain connectivity and networks. Knowledge of how DW-MRI sampling schemes affect fiber estimation accuracy, tractography and the ability to recover complex white-matter pathways, differences between results due to choice of analysis method, and which method(s) perform optimally for specific data sets, all remain important problems, especially as tractography-based studies become common. In this work, we begin to address these concerns by developing sets of simulated diffusion-weighted brain images which we then use to quantitatively evaluate the performance of six DW-MRI analysis methods in terms of estimated fiber orientation accuracy, false-positive (spurious) and false-negative (missing) fiber rates, and fiber-tracking. The analysis methods studied are: 1) a two-compartment "ball and stick" model (BSM) (Behrens et al., 2003); 2) a non-negativity constrained spherical deconvolution (CSD) approach (Tournier et al., 2007); 3) analytical q-ball imaging (QBI) (Descoteaux et al., 2007); 4) q-ball imaging with Funk-Radon and Cosine Transform (FRACT) (Haldar and Leahy, 2013); 5) q-ball imaging within constant solid angle (CSA) (Aganj et al., 2010); and 6) a generalized Fourier transform approach known as generalized q-sampling imaging (GQI) (Yeh et al., 2010). We investigate these methods using 20, 30, 40, 60, 90 and 120 evenly distributed q-space samples of a single shell, and focus on a signal-to-noise ratio (SNR = 18) and diffusion-weighting (b = 1000 s/mm(2)) common to clinical studies. We found that the BSM and CSD methods consistently yielded the least fiber orientation error and simultaneously greatest detection rate of fibers. Fiber detection rate was found to be the most distinguishing characteristic between the methods, and a significant factor for complete recovery of tractography through complex white-matter pathways. For example, while all methods recovered similar tractography of prominent white matter pathways of limited fiber crossing, CSD (which had the highest fiber detection rate, especially for voxels containing three fibers) recovered the greatest number of fibers and largest fraction of correct tractography for complex three-fiber crossing regions. The synthetic data sets, ground-truth, and tools for quantitative evaluation are publically available on the NITRC website as the project "Simulated DW-MRI Brain Data Sets for Quantitative Evaluation of Estimated Fiber Orientations" at http://www.nitrc.org/projects/sim_dwi_brain.


Assuntos
Encéfalo/anatomia & histologia , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Substância Branca/anatomia & histologia , Adulto , Algoritmos , Simulação por Computador , Humanos , Processamento de Imagem Assistida por Computador , Masculino
2.
Artigo em Inglês | MEDLINE | ID: mdl-30556059

RESUMO

In this paper we investigate the effect of single-shell q-space diffusion sampling strategies and applicable multiple-fiber analysis methods on fiber orientation estimation in Diffusion MRI. Specifically, we develop a simulation based on an in-vivo data set and compare a two-compartment "ball-and-stick" model, a constrained spherical deconvolution approach, a generalized Fourier transform approach, and three related methods based on transforms of Fourier data on the sphere. We evaluate each method for N = 20, 30, 40, 60, 90 and 120 angular diffusion-weighted samples, at SNR = 18 and diffusion-weighting b = 1000s/mm2, common to clinical studies. Our results quantitatively show the methods' are most distinguished from each other by their fiber detection ability. Overall, the "ball-and-stick" model and spherical deconvolution approach were found to perform best, yielding the least orientation error, and greatest detection rate of fibers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...