Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Astrobiology ; 15(6): 478-91, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26060984

RESUMO

Between April 2009 and July 2011, the NASA Haughton-Mars Project (HMP) led the Northwest Passage Drive Expedition (NWPDX), a multi-staged long-distance crewed rover traverse along the Northwest Passage in the Arctic. In April 2009, the HMP Okarian rover was driven 496 km over sea ice along the Northwest Passage, from Kugluktuk to Cambridge Bay, Nunavut, Canada. During the traverse, crew members collected samples from within the rover and from undisturbed snow-covered surfaces around the rover at three locations. The rover samples and snow samples were stored at subzero conditions (-20°C to -1°C) until processed for microbial diversity in labs at the NASA Kennedy Space Center, Florida. The objective was to determine the extent of microbial dispersal away from the rover and onto undisturbed snow. Interior surfaces of the rover were found to be associated with a wide range of bacteria (69 unique taxa) and fungi (16 unique taxa). In contrast, snow samples from the upwind, downwind, uptrack, and downtrack sample sites exterior to the rover were negative for both bacteria and fungi except for two colony-forming units (cfus) recovered from one downwind (1 cfu; site A4) and one uptrack (1 cfu; site B6) sample location. The fungus, Aspergillus fumigatus (GenBank JX517279), and closely related bacteria in the genus Brevibacillus were recovered from both snow (B. agri, GenBank JX517278) and interior rover surfaces. However, it is unknown whether the microorganisms were deposited onto snow surfaces at the time of sample collection (i.e., from the clothing or skin of the human operator) or via airborne dispersal from the rover during the 12-18 h layovers at the sites prior to collection. Results support the conclusion that a crewed rover traveling over previously undisturbed terrain may not significantly contaminate the local terrain via airborne dispersal of propagules from the vehicle.


Assuntos
Ecologia , Marte , Microbiota , Modelos Teóricos , Nunavut
2.
Astrobiology ; 9(4): 391-400, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19519214

RESUMO

The 39 +/- 2 Ma Haughton impact structure on Devon Island comprises a thick target succession of sedimentary rocks, mainly carbonates. The carbonates contain pre-impact organic matter, including fossil biological markers. Haughton is located in an area where no major thermal event has affected the sedimentary succession after heating caused by impact. This makes Haughton uniquely suitable for studies concerning the preservation of fossil biological markers following an impact event. Melt breccia is the most common impactite at Haughton. It is composed of clasts of the target, mainly carbonates, embedded in a fine groundmass. The groundmass is composed of material that was melted during impact. In this study, fossil biological marker maturity parameters (tricyclic terpane-hopane ratio and pregnane-sterane ratio) and an aromatic maturity parameter [methylphenanthrene ratio (MPR)] were used to compare the degree of thermal alteration in different size fractions of carbonate clasts (<0.5-4 cm in diameter) and between edges and centers of large carbonate clasts (15-20 cm in diameter). The data show that fossil biological markers can be preserved and detected in isolated large and small fractions of carbonate clasts that are embedded in an impact melt. The results also indicate that there is a thermal gradient from the center of a clast to the edge of a clast, which suggests that biological markers are more likely to be found preserved in the center of a clast. The thermal maturity values point to a higher degree of thermal alteration in the melt breccia carbonate clasts than in the coherent carbonate bedrock.


Assuntos
Biomarcadores/análise , Fósseis , Meteoroides , Regiões Árticas , Canadá , Carbonatos/química , Temperatura Alta
3.
BMC Immunol ; 8: 7, 2007 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-17521440

RESUMO

BACKGROUND: Dysregulation of the immune system has been shown to occur during spaceflight, although the detailed nature of the phenomenon and the clinical risks for exploration class missions have yet to be established. Also, the growing clinical significance of immune system evaluation combined with epidemic infectious disease rates in third world countries provides a strong rationale for the development of field-compatible clinical immunology techniques and equipment. In July 2002 NASA performed a comprehensive immune assessment on field team members participating in the Haughton-Mars Project (HMP) on Devon Island in the high Canadian Arctic. The purpose of the study was to evaluate the effect of mission-associated stressors on the human immune system. To perform the study, the development of techniques for processing immune samples in remote field locations was required. Ten HMP-2002 participants volunteered for the study. A field protocol was developed at NASA-JSC for performing sample collection, blood staining/processing for immunophenotype analysis, whole-blood mitogenic culture for functional assessments and cell-sample preservation on-location at Devon Island. Specific assays included peripheral leukocyte distribution; constitutively activated T cells, intracellular cytokine profiles, plasma cortisol and EBV viral antibody levels. Study timepoints were 30 days prior to mission start, mid-mission and 60 days after mission completion. RESULTS: The protocol developed for immune sample processing in remote field locations functioned properly. Samples were processed on Devon Island, and stabilized for subsequent analysis at the Johnson Space Center in Houston. The data indicated that some phenotype, immune function and stress hormone changes occurred in the HMP field participants that were largely distinct from pre-mission baseline and post-mission recovery data. These immune changes appear similar to those observed in astronauts following spaceflight. CONCLUSION: The immune system changes described during the HMP field deployment validate the use of the HMP as a ground-based spaceflight/planetary exploration analog for some aspects of human physiology. The sample processing protocol developed for this study may have applications for immune studies in remote terrestrial field locations. Elements of this protocol could possibly be adapted for future in-flight immunology studies conducted during space missions.


Assuntos
Geografia , Sistema Imunitário/fisiologia , Voo Espacial , Simulação de Ambiente Espacial , Regiões Árticas , Biomarcadores/sangue , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Canadá , Células Cultivadas , Citocinas/análise , Citocinas/sangue , Citocinas/imunologia , DNA Viral/sangue , Herpesvirus Humano 4/fisiologia , Humanos , Hidrocortisona/sangue , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Imunofenotipagem , Masculino , Reprodutibilidade dos Testes , Estresse Fisiológico , Subpopulações de Linfócitos T/imunologia , Linfócitos T/imunologia , Fatores de Tempo , Carga Viral , Latência Viral
4.
Astrobiology ; 7(1): 1-9, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17407400

RESUMO

We launched a cryptoendolithic habitat, made of a gneissic impactite inoculated with Chroococcidiopsis sp., into Earth orbit. After orbiting the Earth for 16 days, the rock entered the Earth's atmosphere and was recovered in Kazakhstan. The heat of entry ablated and heated the rock to a temperature well above the upper temperature limit for life to below the depth at which light levels are insufficient for photosynthetic organisms ( approximately 5 mm), thus killing all of its photosynthetic inhabitants. This experiment shows that atmospheric transit acts as a strong biogeographical dispersal filter to the interplanetary transfer of photosynthesis. Following atmospheric entry we found that a transparent, glassy fusion crust had formed on the outside of the rock. Re-inoculated Chroococcidiopsis grew preferentially under the fusion crust in the relatively unaltered gneiss beneath. Organisms under the fusion grew approximately twice as fast as the organisms on the control rock. Thus, the biologically destructive effects of atmospheric transit can generate entirely novel and improved endolithic habitats for organisms on the destination planetary body that survive the dispersal filter. The experiment advances our understanding of how island biogeography works on the interplanetary scale.


Assuntos
Meio Ambiente Extraterreno , Fotossíntese , Cianobactérias/crescimento & desenvolvimento , Cianobactérias/metabolismo , Ecossistema , Exobiologia , Fenômenos Geológicos , Geologia , Voo Espacial
5.
Analyst ; 130(6): 917-23, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15912241

RESUMO

The Raman spectra of cyanobacterial species, Gloecapsa and Nostoc, in clear gypsum crystals from the Haughton Crater, Devon Island, Canadian High Arctic, site of a meteorite impact during the Miocene some 23 Mya, have been recorded using several visible and near-infrared excitation wavelengths. The best spectra were obtained using a green wavelength at 514.5 nm and a confocal microscope with an image footprint of about 2 micro in diameter and 2 micro theoretical depth. Raman biosignatures for beta-carotene and scytonemin were obtained for one type of colony and parietin and beta-carotene for another; chlorophyll was detected in both types of colony. The different combination of these radiation protectant biomolecules suggests that the two cyanobacterial colonies, namely Nostoc and Gloecapsa, are adopting different survival strategies in the system. Confocal spectroscopic probing of the gypsum crystals exhibited sufficient discrimination for the identification of the biomolecules through the gypsum crystal, in simulation of the detection of extant or extinct halotrophs. This supports the viability of Raman spectroscopic techniques for incorporation as part of the instrumentation suite of a robotic lander for planetary surface exploration for the detection of organisms inside sulfate crystals from previous hydrothermal activity on Mars.


Assuntos
Sulfato de Cálcio , Cianobactérias/isolamento & purificação , Exobiologia/métodos , Marte , Análise Espectral Raman , Sulfatos
6.
Astrobiology ; 3(1): 181-91, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12804371

RESUMO

Impact structures are a rare habitat on Earth. However, where they do occur they can potentially have an important influence on the local ecology. Some of the types of habitat created in the immediate post-impact environment are not specific to the impact phenomenon, such as hydrothermal systems and crater lakes that can be found, for instance, in post-volcanic environments, albeit with different thermal characteristics than those associated with impact. However, some of the habitats created are specifically linked to processes of impact processing. Two examples of how impact processing of target materials has created novel habitats that improve the opportunities for colonization are found in the Haughton impact structure in the Canadian High Arctic. Impact-shocked rocks have become a habitat for endolithic microorganisms, and large, impact-shattered blocks of rock are used as resting sites by avifauna. However, some materials produced by an impact, such as melt sheet rocks, can make craters more biologically depauperate than the area surrounding them. Although there are no recent craters with which to study immediate post-impact colonization, these data yield insights into generalized mechanisms of how impact processing can influence post-impact succession. Because impact events are one of a number of processes that can bring localized destruction to ecosystems, understanding the manner in which impact structures are recolonized is of ecological interest. Impact craters are a universal phenomenon on solid planetary surfaces, and so they are of potential biological relevance on other planetary surfaces, particularly Mars.


Assuntos
Desastres , Planeta Terra , Meio Ambiente , Animais , Aves , Sedimentos Geológicos/química , Microscopia Eletrônica , Paleontologia/métodos
7.
Biol Rev Camb Philos Soc ; 77(3): 279-310, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12227518

RESUMO

Impact craters contain ecosystems that are often very different from the ecosystems that surround them. On Earth over 150 impact craters have been identified in a wide diversity of biomes. All natural events that can cause localized disruption of ecosystems have quite distinct patterns of rccovery. Impact events are unique in that they are the only extraterrestrial mechanism capable of disrupting an ecosystem locally in space and time. Thus, elucidating the chronological sequence of change at the sites of impacts is of ecological interest. In this synthetic review we use the existing literature, coupled with our own observations at the Haughton impact structure, Devon Island, Nunavut, Canada to consider the patterns of biological recovery at the site of impact craters and the ecological characteristics of impact craters. Three phases of recovery are suggested. The Phase of Thermal Biology, a phase associated with the localized, ephemeral thermal anomaly generated by an impact event. The Phase of Impact Succession and Climax, a phase marked by multiple primary and secondary succession events both in the aquatic realm (impact crater-lakes) and terrestrial realm (colonization of paleolacustrine deposits and impact-generated substrata) that are followed by periods of climax ecology. In the case of large-scale impact events (> 10(4) Mt), this latter phase may also be influenced by successional changes in the global environment. Finally, during the Phase of Ecological Assimilation, the disappearance of the surface geological expression of an impact structure results in a concomitant loss of ecological distinctiveness. In extreme cases, the impact structure is buried. Impact succession displays similarities and differences to succession following other agents of ecological disturbance, particularly volcanism.


Assuntos
Planeta Terra , Ecossistema , Sistema Solar , Ecologia , Fenômenos Geológicos , Geologia , Meteoroides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...