Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1297: 342371, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38438240

RESUMO

BACKGROUND: Bacterial infections, especially polymicrobial infections, remain a threat to global health and require advances in diagnostic technologies for timely and accurate identification of all causative species. Digital melt - microfluidic chip-based digital PCR combined with high resolution melt (HRM) - is an emerging method for identification and quantification of polymicrobial bacterial infections. Despite advances in recent years, existing digital melt instrumentation often delivers nonuniform temperatures across digital chips, resulting in nonuniform digital melt curves for individual bacterial species. This nonuniformity can lead to inaccurate species identification and reduce the capacity for differentiating bacterial species with similar digital melt curves. RESULTS: We introduce herein a new temperature calibration method for digital melt by incorporating an unamplified, synthetic DNA fragment with a known melting temperature as a calibrator. When added at a tuned concentration to an established digital melt assay amplifying the commonly targeted 16S V1 - V6 region, this calibrator produced visible low temperature calibrator melt curves across-chip along with the target bacterial melt curves. This enables alignment of the bacterial melt curves and correction of heating-induced nonuniformities. Using this calibration method, we were able to improve the uniformity of digital melt curves from three causative species of bacteria. Additionally, we assessed calibration's effects on identification accuracy by performing machine learning identification of three polymicrobial mixtures comprised of two bacteria with similar digital melt curves in different ratios. Calibration greatly improved mixture composition prediction. SIGNIFICANCE: To the best of our knowledge, this work represents the first DNA calibrator-supplemented assay and calibration method for nanoarray digital melt. Our results suggest that this calibration method can be flexibly used to improve identification accuracy and reduce melt curve variabilities across a variety of pathogens and assays. Therefore, this calibration method has the potential to elevate the diagnostic capabilities of digital melt toward polymicrobial bacterial infections and other infectious diseases.


Assuntos
Infecções Bacterianas , Oligonucleotídeos , Humanos , Calibragem , Temperatura , DNA
2.
Sci Rep ; 13(1): 21848, 2023 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071216

RESUMO

The continued spread of Candida auris in healthcare facilities has increased the demand for widely available screening to aid in containment and inform treatment options. Current methods of detection can be unreliable and require bulky and expensive instruments to lyse and identify fungal pathogens. Here, we present a quick, low-cost, instrument-free method for lysis of C. auris suitable for streamlined sample processing with polymerase chain reaction (PCR) detection. Chemical, thermal, and bead beating lysis techniques were evaluated for lysis performance and compatibility with nucleic acid extraction and downstream PCR reactions. Using only 10 s of manual shaking with glass beads, this method demonstrated a limit of detection (LOD) of C. auris at 500 colony forming units per mL, a 20-fold improvement compared to the LOD without manual shaking, and a 60-fold reduction in time compared to common fungal lysis kits, all while maintaining repeatability and reproducibility across multiple users. This work highlights a simple method for increasing sensitivity and reducing turnaround time of PCR-based C. auris detection and exhibits promise for integration into point-of-care platforms towards real-time triage of colonized patients.


Assuntos
Candidíase , Humanos , Candidíase/diagnóstico , Candidíase/microbiologia , Candida/genética , Candida auris , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reprodutibilidade dos Testes
3.
Anal Chem ; 95(42): 15522-15530, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37812586

RESUMO

Digital PCR combined with high resolution melt (HRM) is an emerging method for identifying pathogenic bacteria with single cell resolution via species-specific digital melt curves. Currently, the development of such digital PCR-HRM assays entails first identifying PCR primers to target hypervariable gene regions within the target bacteria panel, next performing bulk-based PCR-HRM to examine whether the resulting species-specific melt curves possess sufficient interspecies variability (i.e., variability between bacterial species), and then digitizing the bulk-based PCR-HRM assays with melt curves that have high interspecies variability via microfluidics. In this work, we first report our discovery that the current development workflow can be inadequate because a bulk-based PCR-HRM assay that produces melt curves with high interspecies variability can, in fact, lead to a digital PCR-HRM assay that produces digital melt curves with unwanted intraspecies variability (i.e., variability within the same bacterial species), consequently hampering bacteria identification accuracy. Our subsequent investigation reveals that such intraspecies variability in digital melt curves can arise from PCR primers that target nonidentical gene copies or amplify nonspecifically. We then show that computational in silico HRM opens a window to inspect both interspecies and intraspecies variabilities and thus provides the missing link between bulk-based PCR-HRM and digital PCR-HRM. Through this new development workflow, we report a new digital PCR-HRM assay with improved bacteria identification accuracy. More broadly, this work can serve as the foundation for enhancing the development of future digital PCR-HRM assays toward identifying causative pathogens and combating infectious diseases.


Assuntos
Bactérias , Bactérias/genética , Reação em Cadeia da Polimerase/métodos , Temperatura de Transição
4.
medRxiv ; 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37292781

RESUMO

For the 28.2 million people in the world living with HIV/AIDS and receiving antiretroviral therapy, it is crucial to monitor their HIV viral loads with ease. To this end, rapid and portable diagnostic tools that can quantify HIV RNA are critically needed. We report herein a rapid and quantitative digital CRISPR-assisted HIV RNA detection assay that has been implemented within a portable smartphone-based device as a potential solution. Specifically, we first developed a fluorescence-based reverse transcription recombinase polymerase amplification (RT-RPA)-CRISPR assay for isothermally and rapidly detecting HIV RNA at 42 °C in < 30 min. When realized within a commercial stamp-sized digital chip, this assay yields strongly fluorescent digital reaction wells corresponding to HIV RNA. The isothermal reaction condition and the strong fluorescence in the small digital chip unlock compact thermal and optical components in our device, allowing us to engineer a palm-size (70 × 115 × 80 mm) and lightweight (< 0.6 kg) device. Further leveraging the smartphone, we wrote a custom app to control the device, perform the digital assay, and acquire fluorescence images throughout the assay time. We additionally trained and verified a Deep Learning-based algorithm for analyzing fluorescence images and detecting strongly fluorescent digital reaction wells. Using our smartphone-enabled digital CRISPR device, we were able to detect 75 copies of HIV RNA in 15 min and demonstrate the potential of our device toward convenient monitoring of HIV viral loads and combating the HIV/AIDS epidemic.

5.
Trends Biotechnol ; 41(1): 120-133, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35863950

RESUMO

Enzymes have essential roles in catalyzing biological reactions and maintaining metabolic systems. Many in vitro enzymatic bioassays have been developed for use in industrial and research fields, such as cell biology, enzyme engineering, drug screening, and biofuel production. Of note, many of these require the use of high-throughput platforms. Although the microtiter plate remains the standard for high-throughput enzymatic bioassays, microfluidic arrays and droplet microfluidics represent emerging methods. Each has seen significant advances and offers distinct advantages; however, drawbacks in key performance metrics, including reagent consumption, reaction manipulation, reaction recovery, real-time measurement, concentration gradient range, and multiplexity, remain. Herein, we compare recent high-throughput platforms using the aforementioned metrics as criteria and provide insights into remaining challenges and future research trends.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Microfluídica/métodos , Ensaios de Triagem em Larga Escala/métodos , Avaliação Pré-Clínica de Medicamentos , Bioensaio , Técnicas Analíticas Microfluídicas/métodos
6.
Adv Mater Technol ; 7(6): 2101013, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35441089

RESUMO

The rise of highly transmissible SARS-CoV-2 variants brings new challenges and concerns with vaccine efficacy, diagnostic sensitivity, and public health responses to end the pandemic. Widespread detection of variants is critical to inform policy decisions to mitigate further spread, and postpandemic multiplexed screening of respiratory viruses will be necessary to properly manage patients presenting with similar respiratory symptoms. In this work, a portable, magnetofluidic cartridge platform for automated polymerase chain reaction testing in <30 min is developed. Cartridges are designed for multiplexed detection of SARS-CoV-2 with either identification of variant mutations or screening for Influenza A and B. Moreover, the platform can perform identification of B.1.1.7 and B.1.351 variants and the multiplexed SARS-CoV-2/Influenza assay using archived clinical nasopharyngeal swab eluates and saliva samples. This work illustrates a path toward affordable and immediate testing with potential to aid surveillance of viral variants and inform patient treatment.

7.
Front Bioeng Biotechnol ; 10: 826694, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35425764

RESUMO

Candida auris is an emerging multidrug-resistant fungal pathogen that can cause severe and deadly infections. To date, C. auris has spurred outbreaks in healthcare settings in thirty-three countries across five continents. To control and potentially prevent its spread, there is an urgent need for point-of-care (POC) diagnostics that can rapidly screen patients, close patient contacts, and surveil environmental sources. Droplet magnetofluidics (DM), which leverages nucleic acid-binding magnetic beads for realizing POC-amenable nucleic acid detection platforms, offers a promising solution. Herein, we report the first DM device-coined POC.auris-for POC detection of C. auris. As part of POC.auris, we have incorporated a handheld cell lysis module that lyses C. auris cells with 2 min hands-on time. Subsequently, within the palm-sized and automated DM device, C. auris and control DNA are magnetically extracted and purified by a motorized magnetic arm and finally amplified via a duplex real-time quantitative PCR assay by a miniaturized rapid PCR module and a miniaturized fluorescence detector-all in ≤30 min. For demonstration, we use POC.auris to detect C. auris isolates from 3 major clades, with no cross reactivity against other Candida species and a limit of detection of ∼300 colony forming units per mL. Taken together, POC.auris presents a potentially useful tool for combating C. auris.

8.
Biosens Bioelectron ; 190: 113390, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34171821

RESUMO

In the fight against COVID-19, there remains an unmet need for point-of-care (POC) diagnostic testing tools that can rapidly and sensitively detect the causative SARS-CoV-2 virus to control disease transmission and improve patient management. Emerging CRISPR-Cas-assisted SARS-CoV-2 detection assays are viewed as transformative solutions for POC diagnostic testing, but their lack of streamlined sample preparation and full integration within an automated and portable device hamper their potential for POC use. We report herein POC-CRISPR - a single-step CRISPR-Cas-assisted assay that incoporates sample preparation with minimal manual operation via facile magnetic-based nucleic acid concentration and transport. Moreover, POC-CRISPR has been adapted into a compact thermoplastic cartridge within a palm-sized yet fully-integrated and automated device. During analytical evaluation, POC-CRISPR was able detect 1 genome equivalent/µL SARS-CoV-2 RNA from a sample volume of 100 µL in < 30 min. When evaluated with 27 unprocessed clinical nasopharyngeal swab eluates that were pre-typed by standard RT-qPCR (Cq values ranged from 18.3 to 30.2 for the positive samples), POC-CRISPR achieved 27 out of 27 concordance and could detect positive samples with high SARS-CoV-2 loads (Cq < 25) in 20 min.


Assuntos
Técnicas Biossensoriais , COVID-19 , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Humanos , Sistemas Automatizados de Assistência Junto ao Leito , RNA Viral , SARS-CoV-2 , Sensibilidade e Especificidade
9.
medRxiv ; 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34013284

RESUMO

The rise of highly transmissible SARS-CoV-2 variants brings new challenges and concerns with vaccine efficacy, diagnostic sensitivity, and public health responses in the fight to end the pandemic. Widespread detection of variant strains will be critical to inform policy decisions to mitigate further spread, and post-pandemic multiplexed screening of respiratory viruses will be necessary to properly manage patients presenting with similar respiratory symptoms. In this work, we have developed a portable, magnetofluidic cartridge platform for automated PCR testing in <30 min. Cartridges were designed for multiplexed detection of SARS-CoV-2 with either distinctive variant mutations or with Influenza A and B. The platform demonstrated a limit of detection down to 2 copies/µL SARS-CoV-2 RNA with successful identification of B.1.1.7 and B.1.351 variants. The multiplexed SARS-CoV-2/Flu assay was validated using archived clinical nasopharyngeal swab eluates ( n = 116) with an overall sensitivity/specificity of 98.1%/95.2%, 85.7%/100%, 100%/98.2%, respectively, for SARS-CoV-2, Influenza A, and Influenza B. Further testing with saliva ( n = 14) demonstrated successful detection of all SARS-CoV-2 positive samples with no false-positives.

10.
Anal Chem ; 92(19): 13254-13261, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32869628

RESUMO

Digital nucleic acid amplification testing (dNAAT) and analysis techniques, such as digital polymerase chain reaction (PCR), have become useful clinical diagnostic tools. However, nucleic acid (NA) sample preparation preceding dNAAT is generally laborious and performed manually, thus creating the need for a simple sample preparation technique and a facile coupling strategy for dNAAT. Therefore, we demonstrate a simple workflow which automates magnetic bead-based extraction of NAs with a one-step transfer to dNAAT. Specifically, we leverage droplet magnetofluidics (DM) to automate the movement of magnetic beads between small volumes of reagents commonly employed for NA extraction and purification. Importantly, the buffer typically used to elute the NAs off the magnetic beads is replaced by a carefully selected PCR solution, enabling direct transfer from sample preparation to dNAAT. Moreover, we demonstrate the potential for multiplexing using a digital high-resolution melt (dHRM) after the digital PCR (dPCR). The utility of this workflow is demonstrated with duplexed detection of bacteria in a sample imitating a coinfection. We first purify the bacterial DNA into a PCR solution using our DM-based sample preparation. We then transfer the purified bacterial DNA to our microfluidic nanoarray to amplify 16S rRNA using dPCR and then perform dHRM to identify the two bacterial species.


Assuntos
Automação , Escherichia coli/genética , Técnicas de Amplificação de Ácido Nucleico , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Staphylococcus aureus/genética , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...