Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37447442

RESUMO

This study aims to analyze tire wear particulate matter (TWP) from tread rubber with different formulations and to compare the concentration of TWP with different wear devices. The TWP generated during the abrasion of truck and bus radial (TBR) tires were examined, and the effect of using different types of rubber and carbon black (CB) were investigated. When natural rubber (NR) was solely used as the tire tread rubber material, there was a higher concentration of 5-10 µm TWP. However, when the tread formulation consisted of NR mixed with butadiene rubber, the TWP concentration decreased. Changing the type of CB also reduced the amount of TWP in the 2.5 µm size range. The TWP concentration in the specimens increased with increasing speed and vertical load. The TWP generated during the abrasion tests using wear testers and tire simulators exhibited similar trends. These findings suggest that modifying tire tread formulations can effectively control the distribution and amount of TWP generation.

2.
Nanomaterials (Basel) ; 13(9)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37176984

RESUMO

Polypropylene (PP) is used as a housing material in automotive headlamps but can cause fogging as a result of absorbed moisture and temperature differences between the exterior and interior of the housing. In this study, PP was combined with a graphene/montmorillonite hybrid (MMT-G) to yield a nanocomposite with reduced moisture absorption. Crucially, the modified nanofiller had low hydrophilicity and good compatibility with the PP matrix. Notably, the water contact angle of the MMT-G improved by 676%. Furthermore, the maximum moisture absorption of the PP/MMT-G nanocomposites was reduced by up to 11.22% compared to that of commercial PP composites, and the weight of the headlamp housing was decreased by 3.6%. Therefore, the designed nanocomposites are expected to help mitigate headlamp fogging while slightly reducing the housing weight.

3.
Nanomaterials (Basel) ; 12(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36500753

RESUMO

Owing to stringent international environmental and fuel efficiency requirements for lightweight automotive systems, polymer composites have attracted widespread attention. Polypropylene (PP) is a widely employed commercial polymer because of its lightweight and low cost. In this study, PP nanocomposites were fabricated to reduce the moisture absorption of PP composites in automotive headlamp housings. Alkylated chemically modified graphene (CMG-R) was synthesized to reduce the surface hydrophilicity of graphene and increase compatibility with the PP matrix. Fourier transform-infrared spectroscopy and scanning electron microscopy were performed to analyze the nanofillers. X-ray diffraction was performed to determine the interlayer spacing of the nanofiller resulting from surface treatment. Differential scanning calorimetry was used to analyze the crystallinity of the nanocomposites. The results indicated that the improved hydrophobicity of the nanofiller due to alkylation reduced the maximum moisture absorption of the PP nanocomposites by 15% compared to PP composites. The findings of this study are useful for reducing fogging in automotive headlamps.

4.
Polymers (Basel) ; 14(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35631929

RESUMO

This study investigated the service life prediction of fluorocarbon elastomers that are used in automotive vapor fuel hoses under thermal environments. The changes in mechanical properties such as the tensile strength, elongation, compression set (CS), and hardness according to thermal aging were investigated for two types of ternary fluoroelastomers. Destructive tests of the tensile strength and elongation showed large variations in the mechanical properties under the same condition because there is no continuity of samples. In contrast, nondestructive tests of the CS and hardness showed little variations in the mechanical properties under the same condition. The elongation, CS, and hardness were selected as the physical parameters for service life prediction as they showed a tendency according to the aging temperature, which is an accelerating factor. The effective activation energy derived using each physical parameter was 74.91-159.6 kJ mol-1, and the service life was 17.8-140 × 103 h based on B10. In this study, hardness, which has a small deviation between samples, is considered appropriate as mechanical parameter for predicting the service lifetime.

5.
Polymers (Basel) ; 14(6)2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35335470

RESUMO

Polyamide 46 (PA46) is used in various automotive parts because of its excellent heat resistance and mechanical properties. This study aims to improve the frictional properties of PA46 using the lubricating ability of graphene. Nanocomposites are prepared via two mixing methods: Graphene powder is compounded directly with PA46 pellets through a twin-screw extruder, or PA46 powder is added to graphene dispersion for self-adsorption, and subsequently, it is dried and compounded with PA46 through the twin-screw extruder. Application of the nanocomposite in the friction field is evaluated via the pin-on-disk method. The coefficient of friction of the nanocomposite prepared by self-adsorption is lower than that of the nanocomposite prepared by direct compounding. The mechanical properties of the nanocomposite fabricated by self-adsorption are superior to those of other materials. This can be attributed to the uniform dispersion of graphene and the strong attractive force between the PA46 matrix and graphene.

6.
ACS Omega ; 5(51): 33053-33063, 2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33403267

RESUMO

The chemical recycling of postconsumer poly(ethylene terephthalate) (PET) bottles to produce highly thermally stable polyurethane foam (r-PUF) with excellent flame-retardant (FR) performance could be applied on an industrial scale to create a sustainable recycling industry. The advantage of oligo-ester-ether-diol obtained from waste PET glycolysis is its application in r-PUF, generating a durable foam with excellent fire resistance at rather low loadings of phosphorus-nitrogen FRs (P-N FRs), especially in high moisture environments. Compared to polyurethane foam from commercial polyol (c-PUF), r-PUF is notably more thermally stable and efficient in terms of flame retardancy, even without adding FRs. By incorporating 15 php diammonium phosphate (DAP) as a P-N FR, r-PUF/DAP self-extinguished 5 s after the removal of the 2nd flame application with a limited oxygen index value of 24%. However, for c-PUF, a much higher DAP (30 php) loading did not exhibit any rating in the vertical burning test. The aromatic moiety in the oligo-ester-ether-diol structure strongly enhanced the compressive strength and thermal stability. The positive outcomes of this study also confirmed that the r-PUF/DAP prepared from oligo-ester-ether-diol not only satisfied the fire safety requirements of polymer applications but also contained a high percentage of postconsumer PET, which could help reduce the amount of recycled polymer materials and improve waste management.

7.
ACS Omega ; 4(5): 7994-8000, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459887

RESUMO

Electroadhesive devices can lift materials of different shapes and various types using the electrostatic force developed at the interface between the device and the object. More specifically, the electrical potential generated by the device induces opposite charges on the object to give electrostatic Maxwell force. Although this technology has a great deal of potential, the key design factors based on the fundamental principles of interfacial polarization have yet to be clearly identified. In this study, we identify that the lifting force is quantitatively related to the total length of the boundary edges of the electrodes, where the induced charges are selectively concentrated. We subsequently propose a model equation that can predict the electrostatic lifting forces for different object materials as a function of the applied voltage, impedance, and electrode-boundary length. The model is based on the fact that the amount of induced charges should be concentrated where the equipotential field distance is minimal. We report that the impedance magnitude is correlated with the electroadhesive lifting forces by analyzing the impedance characteristics of objects made of different materials (e.g., paper, glass, or metal), as attached in situ to the electroadhesive device.

8.
Polymers (Basel) ; 11(2)2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30960220

RESUMO

Rigid polyurethane foam (PUF) was successfully prepared from a novel oligo-ester-ether-diol obtained from the glycolysis of waste poly(ethylene terephthalate) (PET) bottles via reaction with diethylene glycol (DEG) in the presence of ZnSO4·7H2O. The LC-MS analysis of the oligodiol enabled us to identify 67 chemical homologous structures that were composed of zero to four terephthalate (T) ester units and two to twelve monoethylene glycol (M) ether units. The flame retardant, morphological, compression, and thermal properties of rigid PUFs with and without triphenyl phosphate (TPP) were determined. The Tg values showed that TPP played a role of not only being a flame retardant, but also a plasticizer. PUF with a rather low TPP loading had an excellent flame retardancy and high thermal stability. A loading of 10 wt % TPP not only achieved a UL-94 V-0 rating, but also obtained an LOI value of 21%. Meanwhile, the PUF without a flame retardant did not achieve a UL-94 HB rating; the sample completely burned to the holder clamp and yielded a low LOI value (17%). The fire properties measured with the cone calorimeter were also discussed, and the results further proved that the flame retardancy of the PUF with the addition of TPP was improved significantly. The polymeric material meets the demands of density and compression strength for commercial PUF, as well as the needs of environmental development. The current study may help overcome the drawback of intrinsic high flammability and enlarge the fire safety applications of materials with a high percentage of recycled PET.

9.
Macromol Rapid Commun ; 34(6): 504-10, 2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-23355331

RESUMO

Polyglycidyl methacrylate (PGMA) microspheres, crosslinked and surface-functionalized by amine, can be used as a solid-state template for the synthesis of gold (Au) crystals in the forms of either nanoparticles (NPs) or plates. It is discovered that the polymer microsphere acts as an internal template to cultivate Au NPs inside the microsphere or an external template to generate the single-crystal plates depending on the critical concentration (Ccr ) of gold ions. The ion-dipole interaction and the structure-dependent solubility of gold induce two distinct gold nanostructures in the presence of the functionalized polymer microspheres. The catalytic activity and long-term storage of the developed gold nanostructures that can be easily scaled-up for mass production through the developed novel methodology is demonstrated.


Assuntos
Aminas/química , Reagentes de Ligações Cruzadas/química , Ouro/química , Nanopartículas Metálicas/química , Ácidos Polimetacrílicos/química , Aminofenóis/química , Catálise , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Varredura , Microesferas , Nitrofenóis/química , Solubilidade , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...