Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
JACC Clin Electrophysiol ; 9(8 Pt 1): 1321-1329, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37558288

RESUMO

BACKGROUND: Commotio cordis is an increasingly recognized cause of sudden cardiac death. Although commonly linked with athletes, many events occur in non-sport-related settings. OBJECTIVES: The goal of this study was to characterize and compare non-sport-related vs sport-related commotio cordis. METHODS: PubMed and Embase were searched for all cases of commotio cordis from inception to January 5, 2022. RESULTS: Of 334 commotio cordis cases identified, 121 (36%) occurred in non-sport-related contexts, which included assault (76%), motor vehicle accidents (7%), and daily activities (16%). Projectiles were implicated significantly less in non-sport-related events (5% vs 94%, respectively; P < 0.001). Nonprojectile etiologies in non-sport-related events mostly consisted of impacts with body parts (79%). Both categories affected similar younger aged demographic (P = 0.10). The proportion of female victims was significantly higher in non-sport-related events (13% vs 2%, respectively; P = 0.025). Mortality was significantly higher in non-sport-related events (88% vs 66%, respectively; P < 0.001). In non-sport-related events, rates of cardiopulmonary resuscitation (27% vs 97%, respectively; P < 0.001) and defibrillation (17% vs 81%, respectively; P < 0.001) were both lower and resuscitation was more commonly delayed beyond 3 min (80% vs 5%, respectively; P < 0.001). CONCLUSIONS: Commotio cordis occurs across a spectrum of non-sport-related settings including assault, motor vehicle accidents, and daily activities. Both categories affected a younger and male-predominant demographic. Mortality is higher in non-sport-related commotio cordis, likely owing to lower rates of cardiopulmonary resuscitation, defibrillation, automated external defibrillator availability, and extended time to resuscitation. Increased awareness of non-sport-related commotio cordis is essential to develop a means of prevention and mortality reduction, with earlier recognition and prompt resuscitation measures.


Assuntos
Reanimação Cardiopulmonar , Commotio Cordis , Humanos , Masculino , Feminino , Idoso , Commotio Cordis/epidemiologia , Commotio Cordis/complicações , Morte Súbita Cardíaca/epidemiologia , Morte Súbita Cardíaca/etiologia , Morte Súbita Cardíaca/prevenção & controle , Desfibriladores/efeitos adversos
2.
Aging Cell ; 17(6): e12832, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30276955

RESUMO

Microglia, the resident immune cell of the brain, can be eliminated via pharmacological inhibition of the colony-stimulating factor 1 receptor (CSF1R). Withdrawal of CSF1R inhibition then stimulates microglial repopulation, effectively replacing the microglial compartment. In the aged brain, microglia take on a "primed" phenotype and studies indicate that this coincides with age-related cognitive decline. Here, we investigated the effects of replacing the aged microglial compartment with new microglia using CSF1R inhibitor-induced microglial repopulation. With 28 days of repopulation, replacement of resident microglia in aged mice (24 months) improved spatial memory and restored physical microglial tissue characteristics (cell densities and morphologies) to those found in young adult animals (4 months). However, inflammation-related gene expression was not broadly altered with repopulation nor the response to immune challenges. Instead, microglial repopulation resulted in a reversal of age-related changes in neuronal gene expression, including expression of genes associated with actin cytoskeleton remodeling and synaptogenesis. Age-related changes in hippocampal neuronal complexity were reversed with both microglial elimination and repopulation, while microglial elimination increased both neurogenesis and dendritic spine densities. These changes were accompanied by a full rescue of age-induced deficits in long-term potentiation with microglial repopulation. Thus, several key aspects of the aged brain can be reversed by acute noninvasive replacement of microglia.


Assuntos
Envelhecimento/metabolismo , Cognição/fisiologia , Microglia/metabolismo , Neurônios/metabolismo , Animais , Contagem de Células , Forma Celular/efeitos dos fármacos , Cognição/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/genética , Inflamação/patologia , Lipopolissacarídeos/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo
3.
Glia ; 65(6): 931-944, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28251674

RESUMO

Microglia mediate chronic neuroinflammation following central nervous system (CNS) disease or injury, and in doing so, damage the local brain environment by impairing recovery and contributing to disease processes. Microglia are critically dependent on signaling through the colony-stimulating factor 1 receptor (CSF1R) and can be eliminated via administration of CSF1R inhibitors. Resolving chronic neuroinflammation represents a universal goal for CNS disorders, but long-term microglial elimination may not be amenable to clinical use. Notably, withdrawal of CSF1R inhibitors stimulates new microglia to fully repopulate the CNS, affording an opportunity to renew this cellular compartment. To that end, we have explored the effects of acute microglial elimination, followed by microglial repopulation, in a mouse model of extensive neuronal loss. Neuronal loss leads to a prolonged neuroinflammatory response, characterized by the presence of swollen microglia expressing CD68 and CD45, as well as elevated levels of cytokines, chemokines, complement, and other inflammatory signals. These collective responses are largely resolved by microglial repopulation. Furthermore, microglial repopulation promotes functional recovery in mice, with elevated plus maze performance matching that of uninjured mice, despite the loss of 80% of hippocampal neurons. Analyses of synaptic surrogates revealed increases in PSD95 and synaptophysin puncta with microglial repopulation, suggesting that these cells sculpt and regulate the synaptic landscape. Thus, our results show that short-term microglial elimination followed by repopulation may represent a clinically feasible and novel approach to resolve neuroinflammatory events and promote brain recovery.


Assuntos
Encéfalo/fisiopatologia , Proliferação de Células/fisiologia , Encefalite/fisiopatologia , Microglia/fisiologia , Recuperação de Função Fisiológica/fisiologia , Animais , Astrócitos/patologia , Astrócitos/fisiologia , Encéfalo/patologia , Proteínas de Ligação ao Cálcio/metabolismo , Morte Celular , Modelos Animais de Doenças , Encefalite/patologia , Encefalite/psicologia , Feminino , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Microglia/patologia , Neuroimunomodulação/fisiologia , Neurônios/patologia , Neurônios/fisiologia , Sinapses/patologia , Sinapses/fisiologia
4.
Brain ; 139(Pt 4): 1265-81, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26921617

RESUMO

In addition to amyloid-ß plaque and tau neurofibrillary tangle deposition, neuroinflammation is considered a key feature of Alzheimer's disease pathology. Inflammation in Alzheimer's disease is characterized by the presence of reactive astrocytes and activated microglia surrounding amyloid plaques, implicating their role in disease pathogenesis. Microglia in the healthy adult mouse depend on colony-stimulating factor 1 receptor (CSF1R) signalling for survival, and pharmacological inhibition of this receptor results in rapid elimination of nearly all of the microglia in the central nervous system. In this study, we set out to determine if chronically activated microglia in the Alzheimer's disease brain are also dependent on CSF1R signalling, and if so, how these cells contribute to disease pathogenesis. Ten-month-old 5xfAD mice were treated with a selective CSF1R inhibitor for 1 month, resulting in the elimination of ∼80% of microglia. Chronic microglial elimination does not alter amyloid-ß levels or plaque load; however, it does rescue dendritic spine loss and prevent neuronal loss in 5xfAD mice, as well as reduce overall neuroinflammation. Importantly, behavioural testing revealed improvements in contextual memory. Collectively, these results demonstrate that microglia contribute to neuronal loss, as well as memory impairments in 5xfAD mice, but do not mediate or protect from amyloid pathology.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/prevenção & controle , Peptídeos beta-Amiloides/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Doença de Alzheimer/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Feminino , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Placa Amiloide/prevenção & controle
5.
J Neurosci ; 35(27): 9977-89, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26156998

RESUMO

With severe injury or disease, microglia become chronically activated and damage the local brain environment, likely contributing to cognitive decline. We previously discovered that microglia are dependent on colony-stimulating factor 1 receptor (CSF1R) signaling for survival in the healthy adult brain, and we have exploited this dependence to determine whether such activated microglia contribute deleteriously to functional recovery following a neuronal lesion. Here, we induced a hippocampal lesion in mice for 25 d via neuronal expression of diphtheria toxin A-chain, producing both a neuroinflammatory reaction and behavioral alterations. Following the 25 d lesion, we administered PLX3397, a CSF1R inhibitor, for 30 d to eliminate microglia. This post-lesion treatment paradigm improved functional recovery on elevated plus maze and Morris water maze, concomitant with reductions in elevated proinflammatory molecules, as well as normalization of lesion-induced alterations in synaptophysin and PSD-95. Further exploration of the effects of microglia on synapses in a second cohort of mice revealed that dendritic spine densities are increased with long-term microglial elimination, providing evidence that microglia shape the synaptic landscape in the adult mouse brain. Furthermore, in these same animals, we determined that microglia play a protective role during lesioning, whereby neuronal loss was potentiated in the absence of these cells. Collectively, we demonstrate that microglia exert beneficial effects during a diphtheria toxin-induced neuronal lesion, but impede recovery following insult. SIGNIFICANCE STATEMENT: It remains unknown to what degree, and by what mechanisms, chronically activated microglia contribute to cognitive deficits associated with brain insults. We induced a genetic neuronal lesion in mice for 25 d and found activated microglia to increase inflammation, alter synaptic surrogates, and impede behavioral recovery. These lesion-associated deficits were ameliorated with subsequent microglial elimination, underscoring the importance of developing therapeutics aimed at eliminating/modulating chronic microglial activation. Additionally, we found long-term microglial depletion globally increases dendritic spines by ∼35% in the adult brain, indicating that microglia continue to sculpt the synaptic landscape in the postdevelopmental brain under homeostatic conditions. Microglial manipulation can therefore be used to investigate the utility of increasing dendritic spine numbers in postnatal conditions displaying synaptic aberrations.


Assuntos
Hipocampo/patologia , Microglia/fisiologia , Neurônios/patologia , Recuperação de Função Fisiológica/fisiologia , Aminopiridinas/farmacologia , Animais , Sintomas Comportamentais/etiologia , Barreira Hematoencefálica/fisiopatologia , Lesões Encefálicas/complicações , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/patologia , Transtornos Cognitivos/etiologia , Espinhas Dendríticas/patologia , Modelos Animais de Doenças , Doxiciclina/farmacologia , Feminino , Hipocampo/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Fosfopiruvato Hidratase/metabolismo , Pirróis/farmacologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Sinaptofisina/metabolismo
6.
PLoS One ; 10(4): e0122912, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25849463

RESUMO

Microglia are the primary immune cell in the brain and are postulated to play important roles outside of immunity. Administration of the dual colony-stimulating factor 1 receptor (CSF1R)/c-Kit kinase inhibitor, PLX3397, to adult mice results in the elimination of ~99% of microglia, which remain eliminated for as long as treatment continues. Upon removal of the inhibitor, microglia rapidly repopulate the entire adult brain, stemming from a central nervous system (CNS) resident progenitor cell. Using this method of microglial elimination and repopulation, the role of microglia in both healthy and diseased states can be explored. Here, we examine the responsiveness of newly repopulated microglia to an inflammatory stimulus, as well as determine the impact of these cells on behavior, cognition, and neuroinflammation. Two month-old wild-type mice were placed on either control or PLX3397 diet for 21 d to eliminate microglia. PLX3397 diet was then removed in a subset of animals to allow microglia to repopulate and behavioral testing conducted beginning at 14 d repopulation. Finally, inflammatory profiling of the microglia-repopulated brain in response to lipopolysaccharide (LPS; 0.25 mg/kg) or phosphate buffered saline (PBS) was determined 21 d after inhibitor removal using quantitative real time polymerase chain reaction (RT-PCR), as well as detailed analyses of microglial morphologies. We find mice with repopulated microglia to perform similarly to controls by measures of behavior, cognition, and motor function. Compared to control/resident microglia, repopulated microglia had larger cell bodies and less complex branching in their processes, which resolved over time after inhibitor removal. Inflammatory profiling revealed that the mRNA gene expression of repopulated microglia was similar to normal resident microglia and that these new cells appear functional and responsive to LPS. Overall, these data demonstrate that newly repopulated microglia function similarly to the original resident microglia without any apparent adverse effects in healthy adult mice.


Assuntos
Encéfalo/imunologia , Microglia/fisiologia , Animais , Encéfalo/patologia , Forma Celular , Células Cultivadas , Doenças do Sistema Nervoso Central/imunologia , Doenças do Sistema Nervoso Central/patologia , Cognição , Feminino , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos/farmacologia , Masculino , Aprendizagem em Labirinto , Camundongos Endogâmicos C57BL , Atividade Motora , Regeneração Nervosa , Teste de Desempenho do Rota-Rod
8.
Rev. méd. domin ; 50(2/3): 85-7, abr.-sept. 1989. ilus
Artigo em Espanhol | LILACS | ID: lil-80530

RESUMO

Consideramos importantes presentar el síndrome de abdomen en ciruelas pasa (Prune-Belly), porque a pesar de ser fácil de diagnosticar, puede pasar desapersibido al clínico debido su baja incidencia, conociéndose solamente 300 casos en la Literatura Mundial


Assuntos
Recém-Nascido , Humanos , Masculino , Síndrome do Abdome em Ameixa Seca , Síndrome do Abdome em Ameixa Seca/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...