Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci Res ; 90(9): 1794-802, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22535477

RESUMO

Stem cell therapy is a promising approach for stroke. However, low survival rates and potential tumorigenicity of implanted cells could undermine the efficacy of the cell-based treatment. The use of stem cell-conditioned medium (CM) may be a feasible approach to overcome these limitations. Especially, specific stem cell culture condition and continuous infusion of CM into ischemic brains would have better therapeutic results. The CM was prepared by culturing human adipose-derived stem cells in a three-dimensional spheroid form to increase the secretion of angiogenic/neuroprotective factors. Ischemic stroke was induced by standard middle cerebral artery occlusion methods in the brain of 8-week-old Sprague-Dawley rats. Continuous infusion of CM or αMEM media (0.5 µl/hr) into the lateral ventricle was initiated 8 days after the surgery and maintained for 7 days. Alteration in the motor function was monitored by the rotarod test. Infarction volume and the number of microvessels or TUNEL-positive neural cells were analyzed 15 days after the surgery. Compared with αMEM, continuous CM infusion reduced the infarction volume and maintained motor function. The number of CD31-positive microvessels and TUNEL-positive neural cells significantly increased and decreased, respectively, in the penumbra regions. Although the apoptosis of all neural cell types decreased, reduction in the microglial apoptosis and astrogliosis was prominent and significant. In this study, the therapeutic effects of the CM against stroke were confirmed in an animal model. Increased endothelial cell proliferation, reduced neural cell apoptosis, and milder astrogliosis may play important roles in the treatment effects of CM.


Assuntos
Indutores da Angiogênese/farmacologia , Meios de Cultivo Condicionados/farmacologia , Células-Tronco/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Tecido Adiposo/citologia , Animais , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Humanos , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Masculino , Microscopia Confocal , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/patologia
2.
Acta Orthop ; 82(6): 756-60, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22066556

RESUMO

BACKGROUND AND PURPOSE: Various new delivery systems for recombinant human bone morphogenetic protein-2 (rhBMP-2) have been introduced to improve its efficacy in osteogenesis. Of these, we have previously developed heparin-conjugated PLGA nanospheres (HCPN) as a long-term delivery system for BMP-2. In vitro studies have shown that the BMP-2 long-term delivery system enhances the level of bone formation. However, the long-term effects of BMP-2 on spinal fusion have not been assessed. Therefore, we now tested the hypothesis that the long-term delivery of BMP-2 using HCPN improves spinal fusion compared to short-term delivery in a rabbit fusion model. METHODS: 24 adult New Zealand White rabbits underwent posterolateral fusion (6 animals in 4 groups). The autograft group received an autologous iliac chip bone graft as a positive control. The BMP-2-PN group received rhBMP-2 (20 µg per implant) and PLGA nanospheres (PN) suspended in fibrin gel, and served as a short-term release group. The HCPN group received HCPN suspended in fibrin gel without BMP-2 as a negative control. The BMP-2-HCPN group received rhBMP-2 (20 µg per implant)-bound HCPN suspended in fibrin gel and served as a long-term release group. All animals were killed 12 weeks after surgery. Manual palpation, axial tensile tests, radiography, and histological evaluations were then performed. RESULTS: The spinal fusion rate and Young's modulus of the fusion mass were better in the BMP-2 long-term delivery group than in the short-term delivery group at an equivalent dose. However, the outcome of the long-term delivery was inferior to that of the autograft group. INTERPRETATION: The HCPN system showed potential as an effective carrier that might improve the osteogenic efficacy of BMP-2 for spinal fusion.


Assuntos
Proteína Morfogenética Óssea 2/administração & dosagem , Fusão Vertebral/métodos , Adulto , Animais , Transplante Ósseo , Sistemas de Liberação de Medicamentos , Humanos , Modelos Animais , Osteogênese/efeitos dos fármacos , Coelhos , Fusão Vertebral/normas , Resistência à Tração , Fatores de Tempo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...