Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 18(7)2017 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-28698492

RESUMO

The structural information of small therapeutic compounds complexed in biological matrices is important for drug developments. However, structural studies on ligands bound to such a large and dynamic system as microtubules are still challenging. This article reports an application of the solid-state NMR technique to investigating the bioactive conformation of epothilone B, a microtubule stabilizing agent, whose analog ixabepilone was approved by the U.S. Food and Drug Administration (FDA) as an anticancer drug. First, an analog of epothilone B was designed and successfully synthesized with deuterium and fluorine labels while keeping the high potency of the drug; Second, a lyophilization protocol was developed to enhance the low sensitivity of solid-state NMR; Third, molecular dynamics information of microtubule-bound epothilone B was revealed by high-resolution NMR spectra in comparison to the non-bound epothilone B; Last, information for the macrolide conformation of microtubule-bound epothilone B was obtained from rotational-echo double-resonance (REDOR) NMR data, suggesting the X-ray crystal structure of the ligand in the P450epoK complex as a possible candidate for the conformation. Our results are important as the first demonstration of using REDOR for studying epothilones.


Assuntos
Epotilonas/química , Espectroscopia de Ressonância Magnética/métodos , Cristalografia por Raios X , Epotilonas/metabolismo , Microtúbulos/metabolismo , Conformação Molecular , Estados Unidos , United States Food and Drug Administration
2.
Sci Rep ; 3: 3189, 2013 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-24217000

RESUMO

Nuclear magnetic resonance (NMR) is a fundamental research tool that is widely used in many fields. Despite its powerful applications, unfortunately the low sensitivity of conventional NMR makes it difficult to study thin film or nano-sized samples. In this work, we report the first NMR spectrum obtained from general thin films by using magnetic resonance force microscopy (MRFM). To minimize the amount of imaging information inevitably mixed into the signal when a gradient field is used, we adopted a large magnet with a flat end with a diameter of 336 µm that generates a homogeneous field on the sample plane and a field gradient in a direction perpendicular to the plane. Cyclic adiabatic inversion was used in conjunction with periodic phase inversion of the frequency shift to maximize the SNR. In this way, we obtained the (19)F NMR spectrum for a 34 nm-thick CaF2 thin film.

3.
J Hazard Mater ; 262: 130-6, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24021165

RESUMO

To obtain adsorbents with high capacities for removing heavy metals and organic pollutants capable of quick magnetic separation, we fabricated unique sea-urchin-like magnetic iron oxide (mixed γ-Fe2O3/Fe3O4 phase) nanostructures (called u-MFN) with large surface areas (94.1m(2) g(-1)) and strong magnetic properties (57.9 emu g(-1)) using a simple growth process and investigated their potential applications in water treatment. The u-MFN had excellent removal capabilities for the heavy metals As(V) (39.6 mg g(-1)) and Cr(VI) (35.0 mg g(-1)) and the organic pollutant Congo red (109.2 mg g(-1)). The u-MFN also displays excellent adsorption of Congo red after recycling. Because of its high adsorption capacity, fast adsorption rate, and quick magnetic separation from treated water, the u-MFN developed in the present study is expected to be an efficient magnetic adsorbent for heavy metals and organic pollutants in aqueous solutions.


Assuntos
Compostos Férricos/química , Metais Pesados/isolamento & purificação , Nanoestruturas , Compostos Orgânicos/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água , Cristalografia por Raios X , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão
4.
Nanoscale ; 4(16): 4983-8, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22751863

RESUMO

Solid-state flexible energy storage devices hold the key to realizing portable and flexible electronic devices. Achieving fully flexible energy storage devices requires that all of the essential components (i.e., electrodes, separator, and electrolyte) with specific electrochemical and interfacial properties are integrated into a single solid-state and mechanically flexible unit. In this study, we describe the fabrication of solid-state flexible asymmetric supercapacitors based on an ionic liquid functionalized-chemically modified graphene (IL-CMG) film (as the negative electrode) and a hydrous RuO(2)-IL-CMG composite film (as the positive electrode), separated with polyvinyl alcohol-H(2)SO(4) electrolyte. The highly ordered macroscopic layer structures of these films arising through direct flow self-assembly make them simultaneously excellent electrical conductors and mechanical supports, allowing them to serve as flexible electrodes and current collectors in supercapacitor devices. Our asymmetric supercapacitors have been optimized with a maximum cell voltage up to 1.8 V and deliver a high energy density (19.7 W h kg(-1)) and power density (6.8 kW g(-1)), higher than those of symmetric supercapacitors based on IL-CMG films. They can operate even under an extremely high rate of 10 A g(-1) with 79.4% retention of specific capacitance. Their superior flexibility and cycling stability are evident in their good performance stability over 2000 cycles under harsh mechanical conditions including twisted and bent states. These solid-state flexible asymmetric supercapacitors with their simple cell configuration could offer new design and fabrication opportunities for flexible energy storage devices that can combine high energy and power densities, high rate capability, and long-term cycling stability.

5.
J Appl Phys ; 111(8): 83911-839117, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22566714

RESUMO

In-plane to out-of-plane magnetization switching in a single nickel nanorod affixed to an attonewton-sensitivity cantilever was studied at cryogenic temperatures. We observe multiple sharp, simultaneous transitions in cantilever frequency, dissipation, and frequency jitter associated with magnetic switching through distinct intermediate states. These findings suggest a new route for detecting magnetic fields at the nanoscale.

6.
J Colloid Interface Sci ; 372(1): 252-60, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22305420

RESUMO

The measurement of surface charge on nanofibers was achieved by characterizing zeta potential of the nanofibers via a newly developed device for streaming current measurement. Low flow rates were sufficient to generate detectable streaming currents in the absence of an externally applied voltage without damaging nanofiber samples. Zeta potential was calculated by using the Helmholtz-Smoluchowski equation and the measured streaming currents. Two acrylic plates were machined and assembled to form a microfluidic channel that is 150 µm high, 2.0mm wide, and 30 mm long. Two electrodes for the measurement of streaming currents were housed in the top plate. Two nanofibers of pure polyacrylonitrile (PAN) fibers and charged (TiO(2) incorporated) PAN fibers were prepared and characterized in the device. Monobasic sodium phosphate and dibasic sodium phosphate were used to prepare four different pH buffer solutions ranging from pH 5 to pH 8 in order to characterize the zeta potentials. The pure PAN nanofibers had negatively-charged surfaces regardless of pH. However, the zeta potentials of PAN/TiO(2) nanofibers changed from positive to negative at pH 6.5. The zeta potential measurements made on the nanofibers in this new microfluidic device matched with those of the powdered raw materials using a commercial Zetasizer.

7.
Phys Rev B Condens Matter Mater Phys ; 85(16): 165447-165453, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24523575

RESUMO

We report a unified framework describing all existing protocols for spin manipulation and signal creation in frequency-modulation magnetic resonance force microscopy using classical perturbation theory. The framework is well suited for studying the dependence of the frequency shift on the cantilever amplitude via numerical simulation. We demonstrate the formalism by recovering an exact result for a single spin signal and by simulating, for the first time as a function of cantilever amplitude, the frequency shift due to a volume of noninteracting spins inverted by an adiabatic rapid passage. We show that an optimal cantilever amplitude exists that maximizes the signal. Our findings suggest that understanding the amplitude dependence of the spin signal will be important for designing future high-sensitivity experiments.

8.
ACS Nano ; 4(12): 7141-50, 2010 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-21082863

RESUMO

We have batch-fabricated cantilevers with ∼100 nm diameter nickel nanorod tips and force sensitivities of a few attonewtons at 4.2 K. The magnetic nanorods were engineered to overhang the leading edge of the cantilever, and consequently the cantilevers experience what we believe is the lowest surface noise ever achieved in a scanned probe experiment. Cantilever magnetometry indicated that the tips were well magnetized, with a ≤ 20 nm dead layer; the composition of the dead layer was studied by electron microscopy and electron energy loss spectroscopy. In what we believe is the first demonstration of scanned probe detection of electron-spin resonance from a batch-fabricated tip, the cantilevers were used to observe electron-spin resonance from nitroxide spin labels in a film via force-gradient-induced shifts in cantilever resonance frequency. The magnetic field dependence of the magnetic resonance signal suggests a nonuniform tip magnetization at an applied field near 0.6 T.


Assuntos
Imageamento por Ressonância Magnética/métodos , Magnetismo , Fenômenos Mecânicos , Nanotecnologia/métodos , Espectroscopia de Ressonância de Spin Eletrônica , Estudos de Viabilidade , Microscopia Eletrônica , Níquel/química , Silício/química , Espectroscopia de Perda de Energia de Elétrons
9.
Appl Phys Lett ; 97(4)2010 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-20733934

RESUMO

We introduce and demonstrate a method of measuring small force gradients acting on a harmonic oscillator in which the force-gradient signal of interest is used to parametrically up-convert a forced oscillation below resonance into an amplitude signal at the oscillator's resonance frequency. The approach, which we demonstrate in a mechanically detected electron spin resonance experiment, allows the force-gradient signal to evade detector frequency noise by converting a slowly modulated frequency signal into an amplitude signal.

10.
Proc Natl Acad Sci U S A ; 106(52): 22251-6, 2009 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-20018707

RESUMO

We report an approach that extends the applicability of ultrasensitive force-gradient detection of magnetic resonance to samples with spin-lattice relaxation times (T (1)) as short as a single cantilever period. To demonstrate the generality of the approach, which relies on detecting either cantilever frequency or phase, we used it to detect electron spin resonance from a T (1) = 1 ms nitroxide spin probe in a thin film at 4.2 K and 0.6 T. By using a custom-fabricated cantilever with a 4 microm-diameter nickel tip, we achieve a magnetic resonance sensitivity of 400 Bohr magnetons in a 1 Hz bandwidth. A theory is presented that quantitatively predicts both the lineshape and the magnitude of the observed cantilever frequency shift as a function of field and cantilever-sample separation. Good agreement was found between nitroxide T (1) 's measured mechanically and inductively, indicating that the cantilever magnet is not an appreciable source of spin-lattice relaxation here. We suggest that the new approach has a number of advantages that make it well suited to push magnetic resonance detection and imaging of nitroxide spin labels in an individual macromolecule to single-spin sensitivity.


Assuntos
Óxidos N-Cíclicos/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Marcadores de Spin , Fenômenos Biofísicos , Espectroscopia de Ressonância de Spin Eletrônica/instrumentação , Espectroscopia de Ressonância de Spin Eletrônica/estatística & dados numéricos , Desenho de Equipamento , Espectroscopia de Ressonância Magnética , Micro-Ondas , Estrutura Molecular , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...