Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 6(3): 1023, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38298580

RESUMO

[This corrects the article DOI: 10.1039/D3NA00649B.].

2.
Nanoscale Adv ; 6(1): 32-50, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38125597

RESUMO

Medical food is consumed for the purpose of improving specific nutritional requirements or disease conditions, such as inflammation, diabetes, and cancer. It involves partial or exclusive feeding for fulfilling unique nutritional requirements of patients and is different from medicine, consisting of basic nutrients, such as polyphenols, vitamins, sugars, proteins, lipids, and other functional ingredients to nourish the patients. Recently, studies on extracellular vesicles (exosomes) with therapeutic and drug carrier potential have been actively conducted. In addition, there have been attempts to utilize exosomes as medical food components. Consequently, the application of exosomes is expanding in different fields with increasing research being conducted on their stability and safety. Herein, we introduced the current trends of medical food and the potential utilization of exosomes in them. Moreover, we proposed Medi-Exo, a exosome-based medical food. Furthermore, we comprehensively elucidate various disease aspects between medical food-derived exosomes (Medi-Exo) and therapeutic natural bionanocomposites. This review highlights the therapeutic challenges regarding Medi-Exo and its potential health benefits.

3.
Carbohydr Polym ; 321: 121256, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37739491

RESUMO

Increasing the freshness of vegetables requires the elimination of ethylene, which can be done through chemical methods. However, the development of eco-friendly approaches is required for environmental reasons. Chlorella vulgaris (C. vulgaris) was selected as a new biological material for demonstrating an excellent performance in ethylene removal. To support C. vulgaris, bacterial cellulose (BC) produced by Gluconacetobacter hansenii (G. hansenii) was chosen due to its high water content and biodegradability. To increase BC productivity, UV-induced mutant G. hansenii was isolated, and they produced high yields of BC (9.80 ±â€¯0.52 g/L). Furthermore, comparative transcriptome analysis revealed metabolic flux changes toward UDP-glucose accumulation and enhanced BC production. BC-based hydrogels (BC hydrogels) were successfully prepared using a 2.4 % carboxymethyl cellulose (CMC) and 1 % agar mixture. We used Chlorella-BC hydrogels as an ethylene scavenger, which reduced 90 % of ethylene even when the immobilized C. vulgaris was preserved for 14 days at room temperature without media supplementation. We demonstrated for the first time the potential of BC hydrogels to integrate C. vulgaris as a sustainable ethylene absorber for green food packaging and biomass technology.


Assuntos
Chlorella vulgaris , Animais , Hidrogéis , Etilenos , Celulose , Peixes
4.
ACS Infect Dis ; 9(4): 993-1003, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-36994948

RESUMO

Bioactive molecules and immune factors in the bovine colostrum (BC) are important elements of passive immunity that prevent bacterial infection. However, the mechanisms underlying the antimicrobial activity of BC are not fully understood. We assessed the antibacterial properties of BC-derived exosomes (BC-Exo) and found that they had bacteriostatic, anti-hemolytic, and biofilm-eradication effects on Staphylococcus aureus. Moreover, cell surface deformation and reduced ATP production were observed following BC-Exo treatment. The most reasonable explanation for this finding is that BC-Exo has a strong inhibitory effect on the oxidative phosphorylation pathway in S. aureus. We demonstrated, for the first time, that BC-Exo can exhibit clear antimicrobial activity against S. aureus. Our findings constitute an important basis for future antibiotic discovery.


Assuntos
Exossomos , Infecções Estafilocócicas , Feminino , Gravidez , Animais , Bovinos , Staphylococcus aureus , Exossomos/metabolismo , Colostro , Antibacterianos/farmacologia , Antibacterianos/metabolismo
5.
RSC Adv ; 11(29): 17800-17808, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35480212

RESUMO

Owing to the global spread of the Zika virus (ZIKV) infection, field-ready diagnostics are urgently warranted. In this study, we sought to detect ZIKV using reverse transcription loop-mediated isothermal amplification (RT-LAMP). Briefly, we performed and optimized ZIKV RT-LAMP for the analysis of biological samples (PBS, urine, and plasma). Based on our findings, this method could detect ZIKV RNA in 40 min at 63 °C without any off-target amplification. After performing specificity tests using BtsI restriction enzyme digestion, the feasibility of ZIKV RT-LAMP was determined via end-point detection with different sample matrices. Thereafter, a lateral flow assay (LFA) was conducted to directly detect the ZIKV RT-LAMP products. Based on the LFA reaction, hybridization occurred between the AuNPs:polyadenylated (polyA10)-ZIKV probe and the LAMP amplicons. Subsequently, we optimized the assay parameters, including the concentration of AuNPs and migration matrices (glass fiber and nitrocellulose membrane). By employing a specific AuNP:polyA10-ZIKV LAMP probe, we could demonstrate the purpose and utility of primary and secondary antibodies. Owing to LFA, the resultant ZIKV RT-LAMP products were rapidly and simply assayed in less than 5 min. Further, no preparation step was required to achieve LAMP-probe hybridization, highlighting the utility of this method for field-ready ZIKV diagnosis. Collectively, our findings suggest that ZIKV RT-LAMP combined with LFA could serve as a rapid, accurate, and independent point-of-care detection method for preventing ZIKV outbreaks.

6.
J Biomed Nanotechnol ; 16(11): 1644-1657, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33461656

RESUMO

Actinobacillus pleuropneumoniaesecretes the hemolytic cytotoxins ApxI, ApxII, ApxIII, and ApxIV, which cause pleurop- neumonia in swine. Of these, ApxI is the most toxic. ApxIA, a repeats-in-toxin toxin-like protein, has strong hemolytic and cytotoxic activities. This study aimed to develop an immune modulator ApxIA toxoid, with a Spytag/Spycatcher pair (SC::ST pair), in yeast ghost shells (YGSs). These YGSs were utilized as ApxIA toxoid delivery platforms for -glucan components that can be recognized by the innate immune system. The SC::ST pair was used to conjugate the ApxIA toxoid to YGSs. The YGS-SC::ST-ToxApxIA was successfully phagocytosed by RAW 264.7 macrophages cells, without any toxicity. Further investigation revealed that YGS-SC::ST-ToxApxIA led to defective immune responses, in addition to increased levels of cytokines IL-1ß, TNF-α, and IL-10. A membrane proteomic analysis, to determine preferential major histocompatibility complex binding of ApxIA-derived peptides, was performed and four ApxIA peptides were successfully identified by liquid chromatography with tandem mass spectrometry analysis. The identified peptides may serve as poten- tial vaccine candidates in immunobiology studies of A. pleuropneumoniae. Our results indicate that YGS-SC::ST-ToxApxIA can prevent A. pleuropneumoniae pleuropneumonia (APP) by inducing both humoral and cellular immune responses.


Assuntos
Actinobacillus pleuropneumoniae , Actinobacillus pleuropneumoniae/genética , Animais , Proteínas de Bactérias , Proteômica , Saccharomyces cerevisiae , Suínos , Toxoides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...