Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 11: 1220179, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020885

RESUMO

Testicular germ cell tumors (TGCTs) frequently affect adolescent and young adult males. Although TGCT is more responsive to cisplatin-based chemotherapy than other solid tumors, some patients are nonresponders, and following treatment, many patients continue to experience acute and long-term cytotoxic effects from cisplatin-based chemotherapy. Consequently, it is imperative to develop new therapeutic modalities for treatment-resistant TGCTs. Peptidyl-prolyl isomerase (Pin1) regulates the activity and stability of many cancer-associated target proteins. Prior findings suggest that Pin1 contributes to the pathogenesis of multiple human cancers. However, the specific function of Pin1 in TGCTs has not yet been elucidated. TGCT cell proliferation and viability were examined using cell cycle analysis and apoptosis assays following treatment with KPT6566, a potent, selective Pin1 inhibitor that covalently binds to the catalytic domain of Pin1. A xenograft mouse model was used to assess the effect of KPT6566 on tumor growth in vivo. KPT6566 effectively suppressed cell proliferation, colony formation, and ATP production in P19 and NCCIT cells. Further, KPT6566 induced apoptotic cell death by generating cellular reactive oxygen species and downregulating the embryonic transcription factors Oct-4 and Sox2. Finally, KPT6566 treatment significantly reduced tumor volume and mass in P19 cell xenografts. The Pin1 inhibitor KPT6566 has significant antiproliferative and antitumor effects in TGCT cells. These findings suggest that Pin1 inhibitors could be considered as a potential therapeutic approach for TGCTs.

2.
Molecules ; 28(3)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36770754

RESUMO

Multidrug resistance (MDR) is one of the major barriers in chemotherapy. It is often related to the overexpression of efflux receptors such as P-glycoprotein (P-gp). Overexpressed efflux receptors inhibit chemotherapeutic efficacy by pumping out intracellularly delivered anticancer drugs. In P-gp-mediated MDR-related pathways, PI3K/Akt and NF-kB pathways are commonly activated signaling pathways, but these pathways are downregulated by melittin, a main component of bee venom. In this study, a polymersome based on a poly (lactic acid) (PLA)-hyaluronic acid (HA) (20k-10k) di-block copolymer and encapsulating melittin and doxorubicin was developed to overcome anticancer resistance and enhance chemotherapeutic efficacy. Through the simultaneous delivery of doxorubicin and melittin, PI3K/Akt and NF-κB pathways could be effectively inhibited, thereby downregulating P-gp and successfully enhancing chemotherapeutic efficacy. In conclusion, a polymersome carrying an anticancer drug and melittin could overcome MDR by regulating P-gp overexpression pathways.


Assuntos
Antineoplásicos , Meliteno , Meliteno/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Resistencia a Medicamentos Antineoplásicos , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Resistência a Múltiplos Medicamentos , Antineoplásicos/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Linhagem Celular Tumoral
3.
Int J Mol Sci ; 24(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36674707

RESUMO

In anticancer therapy, combination therapy has been suggested as an alternative to the insufficient therapeutic efficacy of single therapy. Among combination therapies, combination chemo- and photodynamic therapy are actively investigated. However, photodynamic therapy shows a limitation in the penetration depth of the laser. Therefore, sonodynamic therapy (SDT), using ultrasound instead of a laser as a trigger, is an upcoming strategy for deep tumors. Additionally, free drugs are easily degraded by enzymes, have difficulty in reaching the target site, and show side effects after systemic administration; therefore, the development of drug delivery systems is desirable for sufficient drug efficacy for combination therapy. However, nanocarriers, such as microbubbles, and albumin nanoparticles, are unstable in the body and show low drug-loading efficiency. Here, we propose polylactide (PLA)-poly (ethylene glycol) (PEG) polymersomes (PLs) with a high drug loading rate of doxorubicin (DOX) and verteporfin (VP) for effective combination therapy in both in vitro and in vivo experiments. The cellular uptake efficiency and cytotoxicity test results of VP-DOX-PLs were higher than that of single therapy. Moreover, in vivo biodistribution showed the accumulation of the VP-DOX-PLs in tumor regions. Therefore, VP-DOX-PLs showed more effective anticancer efficacy than either single therapy in vivo. These results suggest that the combination therapy of SDT and chemotherapy could show novel anticancer effects using VP-DOX-PLs.


Assuntos
Nanomedicina , Nanopartículas , Distribuição Tecidual , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Doxorrubicina/farmacologia , Polietilenoglicóis , Verteporfina
4.
Front Cell Dev Biol ; 10: 861045, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35433695

RESUMO

Pin1, a cis/trans isomerase of peptidyl-prolyl peptide bonds, plays a crucial role in the pathogenesis of many human cancers. Although chemical inhibitors of Pin1 show potent antitumor therapeutic properties against various cancers, their effect on colorectal cancer, especially colorectal tumor-initiating cells, remains unknown. Here, we investigated the effect of Juglone and KPT6566 on Caco-2 cells and tumor-initiating Caco-2 cells. Juglone and KPT6566 inhibited cell growth and colony formation, and induced apoptosis of Caco-2 cells. We also found that Juglone and KPT6566 downregulated expression of G1-phase-specific cyclins and cyclin-dependent kinases in a time-dependent manner, consistent with suppression of Caco-2 cell proliferation and colony formation. Although tumor-initiating cells are thought to be responsible for resistance to traditional chemotherapeutic drugs, our experiments demonstrate that Juglone or KPT6566 kill both tumor-initiating and non-tumor-initiating Caco-2 cells with equal or similar efficacy. Finally, when CD44+CD133+ tumor-initiating Caco-2 cells were injected into NSG mice, Juglone or KPT6566 led to a meaningful reduction in tumor volume and mass compared with tumors isolated from mice that received control treatment. Overall, these results indicate that chemical Pin1 inhibitors may be a valuable therapeutic option against colorectal tumor-initiating cancer cells.

5.
Int J Biol Sci ; 17(7): 1644-1659, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33994850

RESUMO

Tumor-initiating cells or cancer stem cells are a subset of cancer cells that have tumorigenic potential in human cancer. Although several markers have been proposed to distinguish tumor-initiating cells from colorectal cancer cells, little is known about how this subpopulation contributes to tumorigenesis. Here, we characterized a tumor-initiating cell subpopulation from Caco-2 colorectal cancer cells. Based on the findings that Caco-2 cell subpopulations express different cell surface markers, we were able to discriminate three main fractions, CD44-CD133-, CD44-CD133+, and CD44+CD133+ subsets, and characterized their biochemical and tumorigenic properties. Our results show that CD44+CD133+ cells possessed an unusual capacity to proliferate and could form tumors when transplanted into NSG mice. Additionally, primary tumors grown from CD44+CD133+ Caco-2 cells contained mixed populations of CD44+CD133+ and non-CD44+CD133+ Caco-2 cells, indicating that the full phenotypic heterogeneity of the parental Caco-2 cells was re-created. Notably, only the CD44+CD133+ subset of Caco-2-derived primary tumors had tumorigenic potential in NSG mice, and the tumor growth of CD44+CD133+ cells was faster in secondary xenografts than in primary transplants. Gene expression analysis revealed that the Wnt/ß-catenin pathway was over-activated in CD44+CD133+ cells, and the growth and tumorigenic potential of this subpopulation were significantly suppressed by small-molecule Wnt/ß-catenin signaling inhibitors. Our findings suggest that the CD44+CD133+ subpopulation from Caco-2 cells was highly enriched in tumorigenic cells and will be useful for investigating the mechanisms leading to human colorectal cancer development.


Assuntos
Antígeno AC133/genética , Carcinogênese/genética , Regulação Neoplásica da Expressão Gênica , Receptores de Hialuronatos/genética , Via de Sinalização Wnt/genética , beta Catenina/genética , Antígeno AC133/biossíntese , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/genética , Células CACO-2 , Transformação Celular Neoplásica , Humanos , Receptores de Hialuronatos/biossíntese , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , beta Catenina/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...